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Brittle fracture is almost always to be avoided,
unless...



Pre-historic fracture

* Stone-age tools: most durable prehistoric remains;
* Flint, quartzite, fine-grained or amorphous materials, silicates (obsidian=volcanic glass).

 Conchoidal (shell-like) fractures can be produced only by mechanical impact (dynamic fracture),
rather than, e.g. frost cracking; a method to differentiate prehistoric stone tools from natural
stones.



http://upload.wikimedia.org/wikipedia/commons/8/89/Hand_axe_spanish.gif

Importance of predicting
fracture and damage



Fracture, damage

* Sometimes catastrophic ....




lce sheet fracture

o Iits fracture influences melting




Hydraulic fracturing (fracking):

o Rock fracture induced by pressure pulse
o Can we control the fracture process?

How gas is extracted by shale fracking

NL . Hole drilled into shale rock
"I‘ . Water, sand and chemicals

W]
P%\ pumped into borehole
2

124 . Pressure in bore causes
fractures in shale

. Gas from shale flows into
pipe and back to surface

\Wateritable

Gas

Water
Shale

17000 M)

*Cement and steel casing
Not to scale — Well depths can range from Tkm-4km

Source: BGS, Gov.uk




Sensitivity in Brittle Fracture

* Crack path dependence on force impact LJI\/\'
angle

* Can Al predict what happens for an
angle of, e.g., 8°7?




Potential Solutions using Al

e Sufficient amount of experimental data (not feasible)

* Sufficient amount of synthetic data (produced by a physics-based
model) to train an accurate Al system (possible)

* Are there physics-based models that can accurately simulate
dynamic brittle fracture?



Physics-based models for fracture

e DFT/atomistic models

* Macro-scale (continuum) models:

* based on classical continuum mechanics: work well for ductile failure,
but difficulties predicting dynamic brittle fracture.

* Peridynamic models: nonlocal extension of classical continuum
mechanics



Dynamic brittle fracture and crack branching



Dynamic fracture/Crack branching

Bowden et al, Nature 1967. Crack branching in edge-notch homalite
(Ramulu and Kobayashi, JFM 1985).

fracture origin
mirror

hackle’s

* Roughening of crack surface before branching (mirror-mist-hackle).

* Based on experiments: when a crack reaches a critical state, “it splits into two or more branches, each
propagating with about the same speed as the parent crack, but with a much reduced process zone”
(Ravi-Chandar, 2004).

* Classical fracture mechanics predicts crack speed to drop by half after branching. This does not happen!



What is Peridynamics?

Dr. Stewart Silling (Sandia National Labs)
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Classical continuum mechanics

* Integro-differential equation
* No spatial derivatives (integral operators);

* Damage (from which fracture evolves): a
general nonlinear mapping (not a scalar
or even a tensor)

pu(x,t) = div(a(x,t)) + b(x,t)

Peridynamics

pi(x,t) = f flu(x’',t) —u(xt),x —x)dVx' +b

Hy




Introduction to PD Nebraska

Lincoln

* Material point x interacts with other points (via PD bonds) within a distance called “horizon”.

p(x)ii(x,t) = f f(u(x,t) —ux’,t),x’ —x)dV,s + b(x, t)
H(x)

* Prototype Microelastic Brittle (PMB) material model
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Calibration of bond properties Nebiaska

Lincoln

* Micro-modulus function (c):
* match elastic strain energy for a homogeneous deformation to classical elasticity
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Convergence in Peridynamics Nebiaska

Lincoln

* Graphical description for m-convergence and d-convergence:
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Chen, Peng, Jafarzadeh, Bobaru. “Analytical solutions of peridynamic equations. Part Il:
Elastic wave propagation”- International Journal of Engineering Science, (2023)
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* Ha &Bobaru, International Journal of Fracture (2010)



How do cracks form in PD?

Nodal Damage Index

d — nbroken
n

e disbetween0Oand1.

 Avalue d=0.4-0.5localized along a line (in 2D) or surface (in 3D) indicates that a

crack has formed.
 Cracks/damage are autonomous

* PD Damage # Nodal damage Index

in PD, damage has directionality (a nonlinear mapping, more general than scalar or

tensor quantities used in Continuum Damage Mechanics).

S.A. Silling (2000)
Silling and Askari (2005)

Nebraska

Lincoln

DAM




Peridynamic model results for crack branching

Vertical velocity Reflected waves interact before branching

0.5 MPa

3 MPa (branches at 20 ps T

Branching before reflected waves return

6 MPa (branch at 10

glass homalite




At low stress levels: straight crack

0.01 |-

0.005 |-

-0.005 |-

-0.01 |

Arrows: nodal velocity vectors

Arrow Color:
nodal damage index (red>50%)

. 0.42

0.38
0.34
—1 0.3
— | 0.26
- 0.22
— | 0.18
— | 0.14

0.1
I 0.06
0.02




Higher applied amplitude loading
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“pile-up” of crack surface waves
deflected by material moving strongly

001 against the propagating crack

Bobaru and Zhang, Int. J. Fracture (2015)



surface roughening
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F. Bobaru and G. Zhang, “Why do cracks branch? A peridynamic investigation of dynamic brittle fracture”, Int. J. of Fracture, 196(1): 59-98

(2015).



fracture origin
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Need model flexibility to capture the ‘
actual “geometry” of crack growth

* Roughness on crack surfaces

* Dynamic cracks may branch
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Crack versus Damage

In peridynamics, they are the same!



In PD, the solution decides if damage is “diffuse”
or “localizes” into a crack

“in PD cracks are part of the solution, not part of
the problem.”



Impact-damage in glass

Plates suspended to mimic “free boundary conditions”.

Impact speeds of up to 150m/s: no damage observed in the PC plate.

Tape used along the boundaries (to recover fragments after impact).

Impact location is off-center (1 cm closer to the right).

9.3 cm
0.33 cm
PC backing
plate
plate
10 cm

steel
projectile




Strike and back faces of glass at 150m/s

* About 33-35 major fragments; many through-thickness cracks tilted.

Major radial cracks, some “branch” before reaching boundaries.

Impact cone: small region of comminuted material on strike face, more damage on the back
face of the plate.

Major circumferential cracks, and some very fine, wispy lines/”cracks” up to 3.8-4 cm
diameter around impact center.

Some cracks are parallel to boundaries.

e

S T LR




Wang, Yu, Yen, and Bobaru, Int J. Fracture (2024)




Back face

Strike face Back face



PD results: impact speed 150m/s; damage at 100 pys after impact

DAM

Similar number of major fragments as in experiments (~33-35)

Similar structure of cone fracture, radial cracks, and
circumferential cracks as in exp.

Some cracks parallel to the side boundaries.
Some cracks “branch” near boundaries.

Set of wispy “cracks” seen on back face: same outer diameter as
In experiments (~3 8-4 cm), non-symmetrical.

’;(— Strike face

Back face



The evolution of damage

See 16 simulation movies in Wang, Yu, Yen, and Bobaru, IntJ. Fracture (2024)



Understanding what “drives” the propagation of radial cracks

Out-of-plane nodal velocities
for a section of a layer of nodes

near the impact surface




Edge-on impact on polycrystalline ceramics

Experiment

McCauley, J. W., et al. "Experimental observations on dynamic response of

selected transparent armor materials." Experimental Mechanics 53.1 (2013): 3-
29.

100X100X10mm

A light

Projectile

Towards Camera

* Sample size 10x10x1 cm
* 4-30 GPa pressure imparted by impactor

* 10us needed for p-wave to arrive right
boundary

PD simulation

PD simulation:

« Sample size 2.5x2.5x0.25
mm

195 grains of actual size

. 4GPa applied on a circular
=& region (radius = 0.24mm)
22 of left surface (x = -
= 1.25mm)




Super-shear damage front and sub-sonic cracks

Zhang, Gazonas, and Bobaru. Int. J. Impact Engineering (2018)

L.

Strain energy DEIFACESS ANEL

density
W
500000
gggggg 100X100X10mm
335000
280000 Projectile /
225000
170000
115000 S Aﬁgm
60000 e N
5000 G
Shape of computed failure zone is
- - similar to that in experiment.
Surface damage in experiment
: . (—)
(380m/s impact velocity)

Experimental Mechanics 53(1):3-29, 2013.33

2red waswe front

] McCauley, J. W., et al.




Autonomous Evolution of Damage

Zhang, Gazonas, and Bobaru, Int. J. Impact Eng. (2018)



PeriFast/Dynamics (Matlab-based on GitHub)

In-plane nodal velocity

vZ,t=5.00e-08 sec
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PeriFast (Matlab code on GitHub)

* Perifast/Dynamics

e Perifast/Corrosion

Jafarzadeh, Larios, & Bobaru, (2020). Journal of Peridynamics and Nonlocal Modeling 2, 85-110.

Jafarzadeh, Wang, Larios, & Bobaru, (2021). Computer Methods in Applied Mechanics and Engineering 375, 113633
Jafarzadeh, Mousavi, Larios, & Bobaru, (2022) Computer Methods in Applied Mechanics and Engineering 392, 114666.
Jafarzadeh, Mousavi, Wang, Bobaru, (2024) Journal of Peridynamics and Nonlocal Modeling 6 (1), 33-61

Wang, Jafarzadeh, Mousavi, Bobaru (2024) Journal of Peridynamics and Nonlocal Modeling 6 (1), 62-86



Recent work on Al for fracture

Markus Buehler, J. Appl.
Mech, (2022)

Cost function: strain
energy density

Limitations:

* need to train forany
new loading and
boundary conditions

* Non-physical
behavior allowed

Scale beyond
training:
Broad
predictions

Inference

Deep neural
network

Train

HARARAAAA
AMEEEEEEE

Obtain set of
sample
simulation
results

Simulate

Chemical basis, A
Atomistic
quantum :
(e.g. DFT) modeling
. @

PINNs

Eghbalpoor, Sheidaei,. Theor. Appl. Fract. Mech.
(2024)

Cost function: PD equations
Limitations:

 Costlytotrain
* Any new material needs new kernel

mesh-free PD PD-INN




Promising paths for Al in fracture and damage

* Operator learning: use high-fidelity PD models to generate
training data

e Use DNNs to discover/learn the PD kernel for models of fracture
and damage in materials with complex microstructure.
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