The use of AI in Materials Fracture and Damage

Prof. Florin Bobaru

Mechanical and Materials Engineering University of Nebraska-Lincoln fbobaru2@unl.edu

Workshop for AI-Powered Materials Discovery at Great Plains 22-25 June 2025

Brittle fracture is almost always to be avoided, unless...

Pre-historic fracture

- Stone-age tools: most durable prehistoric remains;
- Flint, quartzite, fine-grained or amorphous materials, silicates (obsidian=volcanic glass).
- Conchoidal (shell-like) fractures can be produced only by mechanical impact (dynamic fracture), rather than, e.g. frost cracking; a method to differentiate prehistoric stone tools from natural stones.

Importance of predicting fracture and damage

Fracture, damage

• Sometimes catastrophic

Ice sheet fracture

○ its fracture influences melting

Hydraulic fracturing (fracking):

- Rock fracture induced by pressure pulse
- Can we control the fracture process?

How gas is extracted by shale fracking

Sensitivity in Brittle Fracture

- Crack path dependence on force impact angle
- Can AI predict what happens for an angle of, e.g., 8°?

Potential Solutions using AI

- Sufficient amount of experimental data (not feasible)
- Sufficient amount of synthetic data (produced by a physics-based model) to train an accurate AI system (possible)
- Are there physics-based models that can accurately simulate dynamic brittle fracture?

Physics-based models for fracture

- DFT/atomistic models
- Macro-scale (continuum) models:
 - based on classical continuum mechanics: work well for ductile failure, but difficulties predicting dynamic brittle fracture.
 - Peridynamic models: nonlocal extension of classical continuum mechanics

Dynamic brittle fracture and crack branching

Dynamic fracture/Crack branching

Crack branching in edge-notch homalite (Ramulu and Kobayashi, IJFM 1985).

- Roughening of crack surface before branching (mirror-mist-hackle).
- Based on experiments: when a crack reaches a critical state, "it splits into two or more branches, each
 propagating with about the same speed as the parent crack, but with a much reduced process zone"
 (Ravi-Chandar, 2004).
- **Classical fracture mechanics** predicts crack speed to drop by half after branching. This does not happen!

What is Peridynamics?

Dr. Stewart Silling (Sandia National Labs)

- Integro-differential equation
- No spatial derivatives (integral operators);
- Damage (from which fracture evolves): a general nonlinear mapping (not a scalar or even a tensor)

Introduction to PD

• Material point *x* interacts with other points (via PD *bonds*) within a distance called "*horizon*".

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) = \int_{H(\mathbf{x})} f(\mathbf{u}(\mathbf{x},t) - \mathbf{u}(\mathbf{x}',t),\mathbf{x}' - \mathbf{x})dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x},t)$$

Prototype Microelastic Brittle (PMB) material model

$$f(\mathbf{\eta}, \boldsymbol{\xi}) = \begin{cases} \frac{\boldsymbol{\xi} + \boldsymbol{\eta}}{\|\boldsymbol{\xi} + \boldsymbol{\eta}\|} c(\boldsymbol{\xi}) s & \boldsymbol{\xi} \le \delta \\ \mathbf{0} & \boldsymbol{\xi} > \delta \end{cases}$$

 $s(\mathbf{\eta}, \mathbf{\xi}) = \frac{\|\mathbf{\eta} + \mathbf{\xi}\| - \|\mathbf{\xi}\|}{\|\mathbf{\xi}\|}$

Relative bond elongation:

Z. Chen, D. Bakenhus, F. Bobaru. "A constructive peridynamic kernel for elasticity, *CMAME*, **311**, 356-373 (2016).

- Silling, S. A., *JMPS*, 2000.
- Ha, Y. D., & Bobaru, F., *IJF*, 2010.
- Silling, S. A., & Askari, E., Computers & structures, 2005.

Calibration of bond properties

Nebraska Lincoln

• Micro-modulus function (c):

constant c

match elastic strain energy for a homogeneous deformation to classical elasticity value

conical c

 $c(\xi) = c_0 = \frac{6E}{\pi\delta^3(1-\nu)}$

$$G_{c} = \begin{cases} \int_{0}^{\delta} \int_{0}^{2\pi} \int_{z}^{\delta} \int_{0}^{\cos^{-1}\left(\frac{z}{\xi}\right)} \left[\frac{c(\xi)s_{0}^{2}\xi}{2}\right] \xi^{2} \sin\phi d\phi d\xi d\theta dz, & 3D \\ 2 \int_{0}^{\delta} \int_{z}^{\delta} \int_{0}^{\cos^{-1}\left(\frac{z}{\xi}\right)} \left[\frac{c(\xi)s_{0}^{2}\xi}{2}\right] \xi d\theta d\xi dz, & 2D \end{cases}$$

 $c(\boldsymbol{\xi}) = \frac{24E}{\pi\delta^3(1-\nu)} \left(1 - \frac{\|\boldsymbol{\xi}\|}{\delta}\right)$

• Ha, Y. D., & Bobaru, F., *IJF*, 2010.

• Silling, S. A., & Askari, E., Computers & structures, 2005.

Convergence in Peridynamics

• Graphical description for *m*-convergence and δ -convergence:

Convergence to exact nonlocal solution

Chen, Peng, Jafarzadeh, Bobaru. "Analytical solutions of peridynamic equations. Part II: Elastic wave propagation"- *International Journal of Engineering Science*, (2023)

> m: horizon factor δ: horizon size Δ x: discretization size

Convergence to exact classical solution (if one exists)

• Ha & Bobaru, International Journal of Fracture (2010)

How do cracks form in PD?

- d is between 0 and 1.
- A value d= 0.4-0.5 localized along a line (in 2D) or surface (in 3D) indicates that a crack has formed.
- Cracks/damage are autonomous
- PD Damage ≠ Nodal damage Index

in PD, damage has directionality (a nonlinear mapping, more general than scalar or tensor quantities used in Continuum Damage Mechanics).

S.A. Silling (2000)	
Silling and Askari (2005)	DAM
	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
it a	
or	17

Peridynamic model results for crack branching

At low stress levels: straight crack

Higher applied amplitude loading

Arrows: nodal velocity vectors

Arrow Color: nodal damage index (red>50%)

"pile-up" of crack surface waves deflected by material moving strongly against the propagating crack

Bobaru and Zhang, Int. J. Fracture (2015)

Migration of damage away from the crack line = surface roughening

F. Bobaru and G. Zhang, "Why do cracks branch? A peridynamic investigation of dynamic brittle fracture", *Int. J. of Fracture*, **196**(1): 59-98 (2015).

Need model flexibility to capture the actual "geometry" of crack growth

- Roughness on crack surfaces
- Dynamic cracks may branch
- Micro-damage in the process zone

INSTABILITY

Crack versus Damage

In peridynamics, they are the same!

In PD, the solution decides if damage is "diffuse" or "localizes" into a crack

"in PD cracks are part of the solution, not part of the problem."

Impact-damage in glass

- Plates suspended to mimic "free boundary conditions".
- Impact speeds of up to 150m/s: no damage observed in the PC plate.
- Tape used along the boundaries (to recover fragments after impact).
- Impact location is off-center (1 cm closer to the right).

Strike and back faces of glass at 150m/s

- About 33-35 major fragments; many through-thickness cracks tilted.
- Major radial cracks, some "branch" before reaching boundaries.
- Impact cone: small region of comminuted material on strike face, more damage on the back face of the plate.
- Major circumferential cracks, and some very fine, wispy lines/"cracks" up to 3.8-4 cm diameter around impact center.
- Some cracks are parallel to boundaries.

Wang, Yu, Yen, and Bobaru, Int J. Fracture (2024)

0.2

0.1

Strike face

Back face

Strike face

PD results: impact speed 150m/s; damage at 100 µs after impact

- Similar number of major fragments as in experiments (~33-35)
- Similar structure of cone fracture, radial cracks, and circumferential cracks as in exp.
- Some cracks parallel to the side boundaries.
- Some cracks "branch" near boundaries.
- Set of wispy "cracks" seen on back face: same outer diameter as in experiments (~3.8-4 cm), non-symmetrical.

🗲 Strike face

The evolution of damage

See 16 simulation movies in Wang, Yu, Yen, and Bobaru, Int J. Fracture (2024)

Understanding what "drives" the propagation of radial cracks

Out-of-plane nodal velocities for a section of a layer of nodes near the impact surface

Edge-on impact on polycrystalline ceramics

Experiment

McCauley, J. W., et al. "Experimental observations on dynamic response of selected transparent armor materials." *Experimental Mechanics* 53.1 (2013): 3-29.

- Sample size 10x10x1 cm
- 4-30 GPa pressure imparted by impactor
- 10µs needed for p-wave to arrive right boundary

PD simulation

PD simulation:

 Sample size 2.5x2.5x0.25 mm

195 grains of actual size

Super-shear damage front and sub-sonic cracks

Zhang, Gazonas, and Bobaru. Int. J. Impact Engineering (2018)

Autonomous Evolution of Damage

Zhang, Gazonas, and Bobaru, Int. J. Impact Eng. (2018)

PeriFast/Dynamics (Matlab-based on GitHub)

PeriFast (Matlab code on GitHub)

- Perifast/Dynamics
- Perifast/Corrosion

Jafarzadeh, Larios, & Bobaru, (2020). Journal of Peridynamics and Nonlocal Modeling 2, 85-110. Jafarzadeh, Wang, Larios, & Bobaru, (2021). Computer Methods in Applied Mechanics and Engineering 375, 113633 Jafarzadeh, Mousavi, Larios, & Bobaru, (2022) Computer Methods in Applied Mechanics and Engineering 392, 114666. Jafarzadeh, Mousavi, Wang, Bobaru, (2024) Journal of Peridynamics and Nonlocal Modeling 6 (1), 33-61 Wang, Jafarzadeh, Mousavi, Bobaru (2024) Journal of Peridynamics and Nonlocal Modeling 6 (1), 62-86

Recent work on AI for fracture

Markus Buehler, J. Appl. Mech, (2022)

Cost function: strain energy density

Limitations:

- need to train for any new loading and boundary conditions
- Non-physical behavior allowed

PINNs

Eghbalpoor, Sheidaei, . *Theor. Appl. Fract. Mech.* (2024)

Cost function: PD equations

Limitations:

- Costly to train
- Any new material needs new kernel

Promising paths for AI in fracture and damage

• **Operator learning**: use high-fidelity PD models to generate training data

• Use DNNs to discover/learn **the PD kernel** for models of fracture and damage in materials with complex microstructure.