EFFICACIOUSNESS OF GENERATIVE AI FOR INTEGRATED STEM PLANNING AND ITS IMPACT ON STEM TEACHER SELF-EFFICACY

RESEARCH PROPOSAL JULIE A. OLSON

WHY THIS RESEARCH?

Introduction

GPT

General Purpose Technology Generative Artificial Intelligence

GenAl in Education

Benefits, Strengths and Opportunities

Conversational Language

Creativity

Decreased Teacher Workload

Assessment Design

Search Large Amounts of Data

Benefits of GenAl

Challenges, Weaknesses and Threats

Bias – Racial and Gender

Equity

Lack of Metacognition

Misinformation

Lack of Deep Understanding

THE HUMAN ELEMENT IS STILL NECESSARY

Adapted from Heinzmann et al., (2019). Reprinted with permission. CC By 4.0

Why I-STEM?

Challenges to the Implementation of I-STEM (*Arshad et al., 2021*)

Challenges in the Implementation of of I-STEM (by %) Occurence in Research

Other Considerations of I-STEM Implementation

- In-service and preservice teacher training
- Engineering coursework?
- Changing from siloed content instruction
- Content Knowledge
- Pedagogy vs content training
- Age/Time teaching in STEM content areas
- Content area teachers and change?

GenAl to Brainstorm Ideas, Assimilate Resources, & Design Lessons for I-STEM:

Real-World Problems – Creative Generation

Standards from Multiple Domains to Guide Learning:

- Next Generation Science Standards
- Common Core State Standards for Mathematics
- International Society for Technology in Education Standards
- State Standards

STEM Domain Knowledge

- Science (Life, Physical, Earth/Space)
- Technology
- Mathematics
- Engineering

CONFIDENCE AND I-STEM SELF-EFFICACY - THE BELIEF THAT THEY CAN SUCCESSFULLY DESIGN AND IMPLEMENT AN I-STEM LESSON.

IMPLEMENTING AN I-STEM PEDAGOGY INVOLVES MANY COMPONENTS AND CHALLENGES, WHICH CAN LEAD TEACHERS TO HAVE LOW CONFIDENCE AND STEM SELF-EFFICACY.

Image created by Gemini (2025)

Bandura's Factors Affecting Self-Efficacy (Bandura, 1977) Correlated to I-STEM and the Use of GenAI.

Performance Accomplishment

- Successful design of an I-STEM lesson using prompts
- Perceiving GenAl and I-STEM as useful

Vicarious Experiences

- Perceiving GenAl as trustworthy
- Model I-STEM lessons

Verbal Pursuasion

- Receiving positive affirmations of ability
- Collaborative interactions using GenAl

Physiological State

- Reduce fear and avoidance of challenges
- Reducing teacher time on task
- Increasing access to vast resources

Timely and Innovative

Professional Significance

- Increasing STEM self-efficacy boosts teacher confidence.
- Improved self-efficacy fosters effective I-STEM implementation.
- Focus on assessment reform with GenAl integration.
- Developing Al literacy prepares educators for future challenges.
- Professional development is essential for educators in AI and I-STEM.

Research Questions

- Research question 1: Are there differences in participants' I-STEM teacher self-efficacy before and after a self-directed, AI-assisted, asynchronous training designed to support creating an I-STEM lesson?
- Research sub-question 1A: Do any of the differences in I-STEM teacher self-efficacy vary as a function of individual STEM content area expertise?
- Research sub-question 1B: To what extent does any change in I-STEM teacher self-efficacy vary as a function of prior teaching experiences?
- Research sub-question 1C: Does change in I-STEM teacher self-efficacy vary according to age?
- Research sub-question 1D: Does prior experience with GenAl for educational purposes affect change in I-STEM teaching self-efficacy?

METHODOLOGY AND ANALYSIS

POPULATION

Participants

INTERVENTION DESIGN

Quantitative Data

Demographic Data

- Age group
- Number of years teaching
- STEM field(s) Teaching
- Current teaching level
- Highest degree completed
- What AI tools have you used for educational purposes
- Specific STEM fields major
- Specific STEM fields currently teaching
- Specific STEM fields have ever taught

T-STEM Science Self-efficacy Score

SETIS I-STEM TEACHER SELF-EFFICACY

RESEARCH QUESTION 1: ARE THERE DIFFERENCES IN PARTICIPANTS' STEM TEACHING SELF-EFFICACY BEFORE AND AFTER AN AI-FOCUSED ASYNCHRONOUS PROFESSIONAL DEVELOPMENT PROGRAM DESIGNED TO SUPPORT I-STEM LESSON PLANNING?

This Photo by Unknown Author is licensed under CC BY-SA

Delimitations in Research

- SETIS instrument assesses I-STEM self-efficacy only.
- Sample limited to South Dakota educators.
- Selection bias with focus on science and math teachers.
- Al-assisted lessons won't be evaluated for accuracy.
- Survey completion time may influence recall of confidence.

Assessment and Limitations of SETIS

- Participants will complete SETIS for I-STEM efficacy assessment.
- SETIS lacks technology selfefficacy evaluation related to GenAl.
- Sample selection bias limits diversity of participants.
- Al-assisted lessons won't be evaluated for accuracy.
- Time limits for surveys may affect recall of confidence.

QUESTIONS? COMMENTS?

Bibliography

- Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. *Contemporary Educational Technology*, 15(3), ep429. https://doi.org/10.30935/cedtech/13152
- Arshad, A. Y. M., Halim, L., & Nasri, N. M. (2021). A Systematic Review: Issues in Implementation of Integrated STEM Education. *Turkish Journal of Computer and Mathematics Education*, 12(9).
- Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191
- Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147. https://doi.org/10.1037/0003-066X.37.2.122
- Braaten, E., & Farnsworth, K. (2024). Educators' Perspectives on Generative AI in K-12: Informing AI in Education Guidance. William & amp; Ida Friday Institute for Educational Innovation. https://fi.ncsu.edu/resource-library/perspectives-ai-in-k12/
- Bybee, R. W. (2013a). The case for STEM education: Challenges and opportunities. National Science Teachers Association.
- Bybee, R. W. (2013b). Translating the NGSS for classroom instruction. NSTA Press, National Science Teachers Association.

1

Cardona, M. A., Rodríguez, R. J., & Ishmael, K. (2023, May). Artificial Intelligence and the Future of Teaching and Learning. US Department of Education: Office of Educational Technology.

- Catalano, A., Asselta, L., & Durkin, A. (2019). Exploring the Relationship between Science Content Knowledge and Science Teaching Self-Efficacy among Elementary Teachers. *IAFOR Journal of Education*, 7(1), 57–70. https://doi.org/10.22492/ije.7.1.04
- Celik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers' professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education. *Computers in Human Behavior*, 138, 107468. https://doi.org/10.1016/j.chb.2022.107468
- Chakarov, A. G., Bush, J. B., & Biddy, Q. (2024). Lessons Learned from Co-Designing Phenomena Driven Student Centered AI Curriculum with Teachers New to AI. https://repository.isls.org//handle/1/10993
- Christensen, R. (2001). Wiring the schools: South Dakota does it right. TechTrends, 45(3), 18.
- Cianca, S. (with ProQuest). (2020). Teaching elementary STEM education: Unpacking standards and implementing practice-based pedagogy (1st ed.). Routledge.
- Davis, R. O., & Lee, Y. J. (2023). Prompt: ChatGPT, Create My Course, Please! Education Sciences, 14(1), 24. https://doi.org/10.3390/educsci14010024
- EL-Deghaidy, H., Mansour, N., & Alzaghibi, M. (2024). Context of STEM Integration in Schools: Views from In-service Science Teachers. *Eurasia Journal of Mathematics, Science and Technology Education*, 13(6), 2459–2484. https://doi.org/10.12973/eurasia.2017.01235a
- Friday Institute for Educational Innovation. (2012a). Teacher Efficacy and Attitudes Toward STEM Survey—Elementary Teachers. William & amp; Ida Friday Institute for Educational Innovation. https://fi.ncsu.edu/resource-library/teacher-efficacy-and-attitudes-towardstem-t-stem-survey-elementary-teachers/

Friday Institute for Educational Innovation. (2012b). Teacher Efficacy and Attitudes Toward STEM Survey—Science Teachers. William & amp; Ida Friday Institute for Educational Innovation. https://fi.ncsu.edu/resource-library/teacher-efficacy-and-attitudes-towardstem-t-stem-survey-science-teachers/

Google. (2025). Gemini [Large Language Model]. Gemini. https://gemini.google.com

- Gruetzemacher, R., & Whittlestone, J. (2022). The transformative potential of artificial intelligence. *Futures*, 135, 102884. https://doi.org/10.1016/j.futures.2021.102884
- Hess, C., & Kunz, S. (2023). "CHATGPT, CAN YOU MOTIVATE MY LEARNERS?"—CO-CREATION OF INSPIRING STEM LESSONS WITH AI CHATBOTS. *ICERI2023 Proceedings*, 6103–6110. 16th annual International Conference of Education, Research and Innovation. https://doi.org/10.21125/iceri.2023.1522
- Hodges, C. B., & Kirschner, P. A. (2024). Innovation of Instructional Design and Assessment in the Age of Generative Artificial Intelligence. *TechTrends*, 68(1), 195–199. https://doi.org/10.1007/s11528-023-00926-x
- Howell, D. C. (2013). Statistical Methods for Psychology (8th ed.). Wadsworth Cengage Learning. https://www.cengage.com/c/statistical-methods-for-psychology-8ehowell/9780357670996/
- JASP Team. (2024). JASP Version 0.19.3 (Version 0.19.3) [Computer software]. https://jaspstats.org/

- Kaldaras, L., Akaeze, H. O., & Reckase, M. D. (2024). Developing valid assessments in the era of generative artificial intelligence. *Frontiers in Education*, 9. https://doi.org/10.3389/feduc.2024.1399377
- Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z
- Lawton, G. (n.d.). What is GenAI? Generative AI Explained | Informa TechTarget. Search Enterprise AI. Retrieved March 17, 2025, from https://www.techtarget.com/searchenterpriseai/definition/generative-AI
- Lo, C. K. (2023). What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. *Education Sciences*, 13(4), Article 4. https://doi.org/10.3390/educsci13040410
- Miao, F., & Holmes, W. (2023). Guidance for generative AI in education and research. UNESCO Digital Library. https://unesdoc.unesco.org/ark:/48223/pf0000386693
- Nadelson, LouisS., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM Perception and Preparation: Inquiry-Based STEM Professional Development for Elementary Teachers. *Journal of Educational Research*, 106(2), 157–168. https://doi.org/10.1080/00220671.2012.667014
- National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. National Academies Press. https://doi.org/10.17226/13165

NGSS Lead States. (2013). Next Generation Science Standards. https://www.nextgenscience.org/ Qualtrics. (2025). Qualtrics [Versions 25.1] [Computer software]. Qualtrics. https://www.qualtrics.com/

- Redmond-Sanogo, A., Maiorca, C., Roberts, T., Ivy, J., & Burton, M. (2024). Navigating the Artificial Intelligence landscape: Implications for mathematics, science, and STEM teaching and learning. *School Science and Mathematics*, 124(1), 1–5. https://doi.org/10.1111/ssm.12635
- Smidt, S. (2009). Introducing Vygotsky: A guide for practitioners and students in early years education. Routledge.
- Taie, S., & Lewis, L. (2022, December). Characteristics of 2020–21 Public and Private K–12 School Teachers in the United States: Results From the National Teacher and Principal Survey. National Center for Education Statistics. https://nces.ed.gov/use-work/resourcelibrary/report/first-look-ed-tab/characteristics-2020-21-public-and-private-k-12-schoolteachers-united-states-results-national?publd=2022113