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* An example from particle physics at Large
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Presentations on quantum
computing at this workshop

From Bits to Qubits: A Beginner’s Journey into Quantum
Computing (Tuesday, KC Kong)

Quantum Computing for Machine Learners: A New Frontier
(Tuesday, KC Kong)

Enhancing quantum utility: Simulating large-scale quantum
spin chains on superconducting quantum computers
(Tuesday, Talal Chowdhury)

Quantum Machine Learning Applications in High Energy
Physics and Beyond (Wednesday, Konstantin Matchev)

More talks on quantum physics
Many talks on Al education and outreach program



What is a quantum computer?

* A quantum computer is a new kind of computer
that's based on the laws of quantum physics.

* It can do certain things faster than normal
computers because it follows a different set of rules.



Very brief history of quantum computing

* 1925 The term “quantum mechanics” used by M. Born (Pauli, Heisenberg from U of Gottingen)

* 1925 Formulation of matrix mechanics by Heisenberg, Born, Jordan . o
_ _ Zur Quantenmechanik

+ 1925-1927: Copenhagen interpretation by Born and Jordan 1925

* 1930 “The principles of quantum mechanics” by Dirac

» 1935 Einstein, Podolsky and Rosen

+ 1935 “Quantum entanglement” and Schrodinger’s cat by Schrodinger and Einstein

» 1947 “Spooky action at a distance” in a letter to M. Born by A. Einstein

» 1976 Attempt to create quantum information theory

* 1980 Quantum mechanical model of Turing machine by Benioff (ANL)

* 1981 “Simulating Physics with Computers" by Feynman

« 1985 Quantum Turing machine by Deutsch

* 1992 Deutsch-Jozsa algorithm

» 1993 First paper on quantum teleportation

» 1994 Shor’s factoring algorithm (cf RSA encryption)

« 1996 Grover search algorithm (Bell)

2004 First five photon entanglement by China

« 2011 First commercially available quantum computer (D-Wave)

« 2017 First quantum teleportation of independent single-photon qubit (14km) by China

« 2018 US National Quantum Initiative Act.

« 2019 Google quantum supremacy

« 2022 Nobel prize (Aspect, Clauser, Zeilinger) for violation of Bell's inequality

« 2022 433 qubits by IBM

« 2023 Breakthrough Prize (Bennet, Brassard, Shor, Deutsch)



https://www.quantum.gov/

EE An official website of the United States government Info v

)) (quantum|gov)

ABOUT

STRATEGY SCIENCE COMPETITIVENESS PEOPLE

NTUM INITIATIVE

Y TO QUANTUM R&D ACROSS THE U.S. GO

NEWS NQCO

Welcome to quantum.gov, the home of the National

Quantum Initiative and its ongoing activities to explore and
promote Quantum Information Science (QIS). The National
Quantum Initiative Act provides for the continued leadership of
the United States in QIS and its technology applications. It calls
for a coordinated Federal program to accelerate quantum
research and development for the economic and national
security of the United States. The United States strategy for QIS
R&D and related activities is described in the National Strategic
Overview for QIS and supplementary documents.

‘ LEARN MORE » ’

NATIONAL QUANTUM INITIATIVE

RECENT REPORTS

¢ Annual Report on the NQI Program Budget, January 6, 2023
¢ National Security Memorandum 10 on Quantum Computing,

 Bringing Quantum Sensors to Fruition, March 24, 2022

May 4, 2022

» QIST Workforce Development National Strategic Plan, February 1, 2022

e The Role of International Talent in Quantum Information Science, October 5, 2021

» A Coordinated Approach to Quantum Networking Research,

» Quantum Frontiers Report, October 7, 2020

January 19, 2021

» National Strategic Overview for Quantum Information Science, September 24,

2018

‘ MORE PUBLICATIONS »

2018


https://www.quantum.gov

Stefan Bladh tefan Bladh te
Alain Aspect John F. Clauser Anton Zeilinger

The Nobel Prize in Physics 2022 was awarded
jointly to Alain Aspect, John F. Clauser and Anton
Zeilinger "for experiments with entangled photons,
establishing the violation of Bell inequalities and
pioneering quantum information science"



Yuri Milner found the Breakthrough prize in 2012.

BOARD TROPHY EVENTS NOMINATIONS NEWS CONTACTS  search
BREAKTHROUGH COMMITTEE PRIZES LAUREATES RULES

MANIFESTO

LAUREATES

Breakthrough Prize  Special Breakthrough Prize  New Horizons Prize  Physics Frontiers Prize

2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012

Oxford
Charles H. Bennett Gilles Brassard - David Deutsch
IBM A |

Université de Montréal

Peter W. Shor

MIT

BB84, quantum cryptography, factoring algorithms, Deutsch’s algorithm



Data is obtained via InspireHEP

The number of papers (in high
energy physics) that has a keyword
“Machine Learning”, “Deep
Learning”, “Artificial Intelligence” or

“Neural Networks” in their title.

1973

G. Cybenko, 1989 with sigmoid activation
K. Hornik, 1991, importance of the multilayer architecture
D Simon, 1993, P. Shor 1994, 1995, L. Grover 1996

The number of papers that has a

th] 7

keyword “Quantum Computer”,
Quantum Computing”,“Quantum
Annealing” or “Quantum Machine

Learning” in their title.

1963

1176 papers in 2023—>

1992

2024

1053 papers in 2023 —>

1999

2024



What 1s Machine Learning?

» Typically problems in physics can be formulated in terms of a search for some
function f : X — Y, from the space of the observed X to a low dimensional
space of a desired target space/label Y, which optimizes some metric (of our
choice). The metric is often called a loss function and written as L(y, f(X)).

« A learning algorithm would find the function that optimizes L over all possible
values of (X, y).

« But this is intractable owning to the
curse of dimensionality and an infinite
number of functions to choose from. Artificial Inteligence

Instead one has labeled training data
{X,, ¥;}L, sampled from p(X, ).

Furthermore the function space is |
restricted to a model - a highly flexible Deep Learming

family of functions f,(X) parameterized

by ¢ .

 Sounds familiar?

Machine Learning

Neural networks




Action Principle
q = (41, 92, - > qN)

q:R—-RY / —
q, {, -

Stavta,tal = [ Lla(®), &0, )

t

0S =0

Z = /eisf Dx where S[x] = /tf L|x(t),x(t)| dt
0

7 ~ Je—S Dx * Newton’s equation of motion

%

Maxwell’'s equation

Schrodinger / Dirac equation

General relativity

All other fundamental equation of motions



Universal Approximation Theorem

« Afeed-forward network with a single hidden layer containing a finite
number of neurons can approximate continuous functions on compact
subsets of R under mild assumptions on the activation function.

Let ¢ : R — R be a nonconstant, bounded, and continuous function (called the activation function). Let
I,,, denote the m-dimensional unit hypercube [0, 1]™. The space of real-valued continuous functions on I,

is denoted by C(I,,,). Then, given any £ > 0 and any function f € C(I,,), there exist an integer NV, real

constants v;, b; € R and real vectors w; € R™ for s =1,..., N, such that we may define:
N
F(z) = Z vip (wlz +b;) as an approximate realization of the function f; that is,
=1
|F(z) — f(z)| <e for all € I,,,. In other words, functions of the form F(z) are dense in C(1,,,).

1-
A. N. Kolmogorov, 1957 S(z) 1 e’ ﬁ
) = —
G. Cybenko, 1989 with sigmoid activation 14+e* e* +1 |

0.5
K. Hornik, 1991, importance of the multilayer architecture
Z. Lu et al, 2017, with deep neural network and ReLu activation | |




Let p > 0 be a fixed number and f(x) be a periodic function
with period 2p, defined on (—p, p). The Fourier series of f(x) is
a way of expanding the function f(x) into an infinite series
involving sines and cosines:

= mm mrx
flx + ap, cos( )+ by, sin( 2.1
(z) = ﬂzl ; Z ; —) (2.1)

where ag, a,, and b, are called the Fourier coefficients of f(z),
and are given by the formulas

= ;/Zf(x) dr, / f(x) cos( mmj) dr, (2.2)

nma

by, p f( )sin(T) dx,
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Neural network is a function-approximator.

Rectified Linear Unit
flx)=x3+x2-x-1 RelLU

2 ! | ! ! 2

2 N \/ 2 2 0 p

RelLu = max(0, x)
Example by Joe Klein



flx)=x3+x2-x-1

ny(x) = Relu(—5x — 7.7)
na(x) = Relu(—1.2z — 1.3)
n3(x) = Relu(1.2z + 1)
ny(x) = Relu(1.2z — .2)
ns(x) = Relu(2x —1.1)
ne(x) = Relu(bx — 5)

F(z) = —n1(2) — na(z) — na(a)
+ na(x) + ns(z) + ne(x)



Hidden

f(z)=x3+x2-x-1

/

[F(z) — f(z)| <e




Wi
i n
X W 2XW, f [Z x,-w,J — '
i=1 i=1
X n W,
(b)  Input 1st hidden 2nd hidden Output
layer layer layer layer

yj=f(2x.-w.) y.=1 [Zx,w,) yi=7 (Zkak)



Object identification

Taken from Vecanoi (Youtube Educational channel about Al)
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This site quizzes 17 Verbal & 8 Vision Als every week | Last Updated: 06:14PM EDT on June 14, 2025
About Offline Test D About Mensa Norway D

IQ Test Results Show Offline Test | Show Mensa Norway } =
Score reflects average of last 7 tests given

TrackingAl.org

Offline quiz (not in training data)
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Why Machine Learning?



CHALLENGE BlG DATA Taken from J. Duarte’s talk
» HL-LHC will reach 1 exabyte of data per year

1 PB=1000TB
1 EB =1000 PB

LHC Science Facebook
data uploads SKA Phase 1 -
~200 PB 180 PB 2023
~300 PB/year
Google science data
searches

LHC — 2016
50 PB raw data

98 PB
Google
Internet archive Yearly data volumes
~15 EB

HL-LHC — 2026
~600 PB Raw data

SKA Phase 2 — mid-2020’s HL-LHC - 2026
~1 EB science data ~1 EB Physics data



CMS Experiment at the LHC, CERN
Date Recorded: 2009-12-14

Run/Event: 124120/6613074

Candidate Multijet Event at 2.36 TeV

-~ 4
‘

~ i’

A very Iarge,n'ﬂufnger of collisSions occur at a very high er

Proton bunches collider every 25ns.

Energy
Deposit

Rho Phi

ergy.

3.3 Terabyte hard drives/second. 10 Libraries of Congregss/minute.

100 full length DVD movies/second.
Data analysis requires full use of the worldwide Grid co
Worldwide LHC Computing Grid used up to 485,000 co

i

puting system.

puter processing

gores at Run |.




* Perception (our understanding of the
universe) is a dynamic combination of top-
down (theory) and bottom-up (data driven)
processing.

|. Shipsey, 1707.03711



TOP-DOWN AND BOTTOM-UP e
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* Perception (our understanding of the universe) is a
dynamic combination of top-down (theory) and
bottom-up (data driven) processing.

 From 1967 to 2012 particle physics was in a
situation very similar to recognizing the image of
Lincoln. Since 2012 we are in a situation where we
are trying to recognize a Dali masterpiece, with
little information to guide us. Without a roadmap
we are dependent on bottom up information: we
are in a data driven era. (Theoretical challenges)

* Machine Learning and Quantum Computing are
valuable tools for new physics searches.

|. Shipsey, 1707.03711



What is quantum computing?



Digital Computing vs Quantum Computing

Use binaries to perform
calculations and solve problems

Bit: x € {0,1}

Digital computation with 7 bits:
{0,1}" — {0,1}", m<n

Classical gates: A —

o AB
NAND: | = AP
00| 1
01 1
1 01
110

Algorithms

Use QM / qubits to solve problems

% : 0 COS —
Qubit: W>COSE|0>+el¢sin5|1>[ 2 ]

i gin 2
e Sln2
(a;)
: : : %) on
Quantum computation with n qubits: ) e C
\ %2
Quantum gates: Unitary transformation
Measurement

Rotation around x-axis: R(@) = exp <_ ig%)

o (0 1
Pauli X: ax—<1 0>

Quantum Algorithms



Operator

Matrix

Pauli-X (X)
Pauli-Y (Y)
Pauli-Z (Z)
Hadamard (H)
Phase (S, P)

7/8 (T)

Controlled Not
(CNOT, CX)

Controlled Z (CZ)

SWAP

Toffoli
(CCNOT,
CCX, TOFF)
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Why Quantum Computing?

Cryptography

— Mathematics: factoring, hidden subgroup program, discrete
logarithm problem

Optimization
Search algorithm
Quantum Machine Learning 410
—Quantum Advantages? 6,

* Learns better with small # of data [ |
» Faster convergence M "
» Less # of parameters D N mmtins
Quantum simulation

: : 6 : 6
What are the interesting problems? [y) = cos 5 [0) + e™sin |1)

|0) + i]1)




The First Wave of Quantum
Machine Learning?

PRL 103, 150502 (2009) PHYSICAL REVIEW LETTERS 9 OCTOBER 2009

S

Quantum Algorithm for Linear Systems of Equations

Aram W. Harrow,! Avinatan Hassidim,? and Seth Lloyd3

1Department of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
2Research Laboratory for Electronics, MIT, Cambridge, Massachusetts 02139, USA

3Research Laboratory for Electronics and Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
(Received 5 July 2009; published 7 October 2009)

Solving linear systems of equations is a common problem that arises both on its own and as a subroutine
in more complex problems;given a matrix A and a vector b, find a vector X such that Ax = b!.|We consider
the case where one does not need to know the solution x itself, but rather an approximation of the
expectation value of some operator associated with ¥, e.g., ¥T M¥ for some matrix M. In this case, when A
is sparse, N X N and has condition number «, the fastest known classical algorithms can find X and
estimate X7 MZ in time scaling roughly as N./«x. Here, we exhibit a quantum algorithm for estimating
xT M X whose{runtime is a polynomial of log(N) pand «. Indeed, for small values of « [i.e., poly log(NV)], we
prove (using some common complexity-theoretic assumptions) that any classical algorithm for this
problem generically requires exponentially more time than our quantum algorithm.

A _ b Complexity of inversion of a regular matrix=O(N?>)
X = Complexity of inversion of a sparse matrix=O(N )



Complexity

100
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N
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N
o

—Discrete Fourier Transform (DFT)

|~ Fast Fourier Transform (FFT)

Quantum Fourier Transform (QFT)

10



| '35 7 4 1 BIS[|2 3 6 7 101 M4 IS[|{% 5 6 7 121384 15|
|17 19 21 23 25 27 24 31| | 18 19 22 23 26 27 30 31| |20 21 22 23 28 29 30 31|
133 35 37 39 41 43 45 47 | |34 35 38 39 42 43 46 47 | |36 37 38 39 44 45 46 47

149 5153 55 57 59 61 63 | |50 SI S4 55 S8 59 62 63 | |52 53 S4 55 60 61 62 63 |

18 a 10 11 12 13 14 15|16 17 18 19 20 21 22 23 | |32 33 34 35 36 37 38 39 |
|24 25 26 27 28 24 30 31| |24 25 26 27 28 24 30 31| |40 41 42 43 Y4 Y5 46 47 |

|40 41 42 43 44 45 46 47 | {48 44 S0 SI 52 53 S4 SS || {48 44 S0 S| 52 S3 54 SS

156 57 58 59 60 61 62 63 | |56 57 58 54 60 61 62 63 | |56 57 58 59 60 61 62 63 |

---------------------------------------------------------------------------------------------------------------------------



XXXXX1 XXXX1X XXXTXX

| '35 7 4 1 BIS[|2 3 6 7 101 M4 IS[|{% 5 6 7 121384 15|
|17 19 21 23 25 27 24 31| | 18 19 22 23 26 27 30 31| |20 21 22 23 28 29 30 31|
133 35 37 39 41 43 45 47 | |34 35 38 39 42 43 46 47 | |36 37 38 39 44 45 46 47

§ 49 S| S3 S5 S7 S9 61 63 §§ S0 S| S4 55 S8 59 62 63 || {52 53 S4 S5 60 61 62 63 |

18 a 10 1 12 13 4 15[ 16 17 18 19 20 21 22 23| |32 33 34 35 36 37 38 39 |
| 24 25 26 27 28 29 30 31| |24 25 26 27 28 24 30 31 | |40 41 42 43 44 4S 46 47 |

140 41 42 43 44 4S5 46 47 || {48 44 SO SI 52 53 S4 SS | |48 44 50 S| 52 53 S4 SS

156 57 58 59 60 61 62 63| |56 57 S8 54 60 61 62 63 || |56 57 58 59 60 61 62 63 |

XXIXXX XAXXXX TXXXXX



|s there a way to find out the answer
by asking less than 6 questions?




Bernstein-Vazirani Algorithm

 An-bit function f: {0,1}®" — {0,1}, which outputs a single bit, is
guaranteed to be of the form f,(x) = x - 5, where s is an unknown n-bit

n—1

stringand x - s = xpsg + =+ +X,_15,_; = insi (mod 2). Find the unknown
=0

string s = (sg8;°*5,,_1)-

+ Best classical algorithm uses O(n) calls to f,(x) = x - s mod 2. Each
query gives one bit of information of s (because f outputs one bit).

 How do we find s with less than n queries? — Use superposition (over all
possible input bit strings)



Shor’s factoring algorithm

 To factor an integer N, Shor's algorithm runs in polynomial time,

meaning the time taken is polynomial in log N, the size of the
integer given as input. Specifically, it takes quantum gates of order

0((1og NY2(log log N)(log log log N)).

 This is significantly faster than the most efficient known classical
factoring algorithm, the general number field sieve, which works in

sub-exponential time: 0<e

RSA-250 =
641352894770715802787901901705773
890848250147429434472081168596320
245323446302386235987526683477087
37661925585694639798853367

X
333720275949781565562260106053551
142279407603447675546667845209870
238417292100370802574486732968818
77565718986258036932062711

RSA factoring challenge
(Product of exactly two primes)

Number of operations

1.9(log N)(log log N)2/3)

1035 A
10 [ /
10%° L Exp(consthm)
best classical
10%° Classical algorithm
assica
10 L Record:
230 digits
10" +
o constxd’
s/ - T T T T T Shor's algorithm
10
100 1 1 1 1 1 >
0 50 100 150 200 250 300

Number of digits d


https://en.wikipedia.org/wiki/RSA_numbers#RSA-250
https://en.wikipedia.org/wiki/RSA_numbers#RSA-250

Deutsch Algorithm 1985

* We want to find out whether a particular function, with one input
bit and one output bit is constant or balanced. Classically, we
need to evaluate the function twice (i.e., for input = 0 and input
= 1), but remarkably, we only need to evaluate the function
once using quantum algorithm, by using Deutsch’s algorithm.

« Consider a simple function, f(x):{0,1} — {0,1}

For possible functions
— Identity: f(0)=0and f(1) =1 .
— Bit-flip function: f(O)=1andf(1)=0

— Constant function:  f(x) =0 or f(x) =1

X Y X Y

B () OF



$ vs Tiger

» Teaching quantum information science to high-school
and early undergraduate students by Sophia Economou,
Terry Rudolph, Edwin Barnes, 2005.07874

 You encounter two doors:
Money behind at least one
door

-

$

* Tiger might be lurking
behind one door



https://arxiv.org/pdf/2005.07874
https://arxiv.org/pdf/2005.07874




$ vs Tiger

* The button on the left opens both doors

« YOU WANT TO BE SURE THERE'S NO TIGER
BEHIND EITHER DOOR BEFORE YOU PUSH THE
"OPEN” BUTTON

* The device in the middle
will tell you if there is a
tiger behind the door that
you ask about — but you
only get to use it once

Door : Door
1 Tlger? 1 = no tiger,
0 = tiger




$ vs Tiger

e List the three different scenarios for what'’s
behind the doors:




$ vs Tiger

* List the three different scenarios for what’s behind the doors:

£ 5

?‘{%}ﬁ




$ vs Tiger

« Make a truth table for the tiger box for each of the scenarios

Door : Door
1 1 = no tiger,

0 = tiger

In Out In Out In Out

Door

0 0 0
Open? 1 1 1
1 1 1
1 1 1

Door

Open?




$ vs Tiger

« Make a truth table for the tiger box for each of the scenarios

Door . Door
1 1 = no tiger,

0 = tiger
In Out In Out In Out
Door| 0 0 0 0 0
Open? 1 1 1 1 1 0
Door) 4 1 1 1 1 1
Open? 1 O 1 1 1 1
1 = no tiger

0 = tiger



* What gate(s) correspond to the truth table for each scenario?

Door . Door
1 1 = no tiger,

0 = tiger

$ vs Tiger

In Out In Out In Out
Door| () 0 0 0 0 0
Open? 1 1 1 1 1 0
Door| 1 1 1 1 1 1
Open? 1 0 1 1 1 1
1 = no tiger

0 = tiger




$ vs Tiger

* What gate(s) correspond to the truth table for each scenario?

Door . Door
1 Tlger? 1 = no tiger,

0 = tiger

1 = no tiger
0 = tiger In Out In Out
Door () & 0 0 é 0|0 ©@:©® O
Open? 1 1 1 le 0 1 . 0
Door| 1 1 1 é 1 1 e I e 1
open?] 1 JE 0 1 @0 1)1 é 1
\_/

Conditional NOT |[dentity

*

Both are possible.




$ vs Tiger

« Challenge: We can’t change the tiger box, but can we add gates
before and/or after it such that we can determine if there is a tiger
somewhere by ONLY USING THE TIGER BOX ONCE?

« We're trying to prove that quantum computing let’s us do things that
are impossible with classical computing. Therefore, consider adding
some quantum gates.

« Hint 1: We’d like to query both doors with one push of a button, so
maybe we should put the “Door” bit into a superposition.

* Hint 2: We definitely don’'t want a superposition output, so we maybe
we should add a second H to the “Door” bit.

 Hint 3: Our inputs will always be 11 for the solution.
« Hint 4: We want the output to be 11 for no tiger and 10 for tiger.



$ vs Tiger

 H changes 0 into + state.
 H changes 1 into - state.

10) + |1)

?, : 6
ly) = cosi |0) + e“”sini |1)

1 W || [ 0 =tiger!, 1 = no tiger



$ vs Tiger

In ‘ Out In | Out In Out

1 s W ollh WA q][1Em-® o
1THOE 1" HE 1/W1HOOH 1

 \What does this tell us?

—We can solve (some) unsolvable problems with quantum
computing

—We can determine IF there is a tiger, but not WHICH
DOOR




Variational Quantum Algorithms

Hybrid quantum-classical model is suggested to circumvent the issue of
going slow with quantum annealer as well as implementing Hamiltonian
in the available hardware.

Quantum: parameterize wave function
Classical: minimize/maximize the expectation value of H in the problem.

E©) = (w(0) | H|w(®))

Quantum Classical

Output
f(x;6)

!

I
I
I
I
I
I
Cost l
I
I
I
I
I
I
I

State
preparation

z) 4 Ulz;0) |-

X

x = |x)
U(x; 6;)

Ely - f(x; 0)1*

Quantum circuit




Variational Quantum Algorithms




Quantum Machine Learning

« Atrtificial Intelligence: Statistical prediction

 Machine Learning: Learn from data

* Quantum Machine Learning: Learn from data with quantum algorithms
— Subdiscipline of quantum computing and quantum information

data generating system

science

data processing device

C - classical, Q) - quantum

CC: classical data being processed
classically

QC: how machine learning can help with
gquantum computing

CQ: classical data fed into quantum
computer for analysis (Qquantum machine
learning)

QQ: quantum data being processed by
guantum computer (ex: Quantum
simulation)



Quantum Optimization

« Optimization problems are everywhere.
— Continuous optimization
— Discrete optimization: combinatorial optimization
— Quadratic Unconstrained Binary Optimization (QUBOQO)
* NP hard problem
« Quadratic function might have several local minima
 Close connection to Ising model
* Apply quantum algorithms to solve optimization problem
— Gate model: use universal gates (Pauli’s)

— Non-gate model (quantum annealer): relies on adiabatic
theorem to find a minimum energy of Hamiltonian
corresponding to the minimum value of some cost
function.



MaxCut problem

* Objective:
— Maximize the number of cut edges in a graph when split
into 2 parts

— Divides the set of nodes in the graph into two subsets so
that we have as many edges as possible that go between
the two sets

O—O ¢

Cut size =2 Cutsize =3 Cutsize =5



Map Coloring

* Problem: Color the regions of a given map such that
—at most four colors are used
—no two adjacent™ regions have the same color

Valid four-coloring Invalid; more than 4 colors Invalid; yellows touch

* "adjacent” means “shares an edge”; sharing a corner is OK



Traveling salesman problem (TSP)

« Given a list of cities and the distances between each pair
of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

 |tis an NP-hard problem in combinatorial optimization,
iImportant in theoretical computer science and operations
research.



https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Operations_research

Quadratic Unconstrained Binary
Optimization (QUBO)

QUBO: combinatorial optimization problem with a wide range of
applications from finance to ML (partitioning, graph coloring, task
allocation, max-sat, max-cut etc)

f:7Z; — R Quadratic polynomial over binary variable
x, € Z,=1{0,1}, h,q; €R
f(x)—Zqu]xlx+th cY
=1 j=1 X_( n1x2x1)

Find a binary vector x* which minimizes f (binary strings of n-bits)

x* = argmin f(x)
xXeZ;

In matrix notation, f(x) = x’Ox, where Q € R"™"
NP-hard problem: no polynomial-time algorithms are known.



Ising formulations of many NP problems

Introduction

1.1 Quantum Adiabatic Optimization . . . . . . . . . . .. ... ... ..... Andrew Lucas
1.2 Ising Spin Glasses . . . . . . . . . . e

1.3 The Goal of This Paper . . . .. . ... ... .. .. .. ... ... .... 1302.5843

1.4 What Problems Are Easy (to Embed) on Experimental AQO Devices? . .

Partitioning Problems

2.1 Number Partitioning . . . . . . . .. ... ... L H = — 2 J.. G.Z O'.Z — 2 h G.Z
2.2 Graph Partitioning . . . . . . .. ... L] !

2.3 Clques . . . . . l,] i

2.4 Reducing N to log N Spins in Some Constraints . . . . . ... ... ...

Binary Integer Linear Programming 6 Coloring Problems

6.1 Graph Coloring . . . . . . . .. .. ..
Covering and Packing Problem: 6.2 Clique COVEr . . . . o v v vt
4.1 Exact Cover . . . .. ... .. 6.3 Job Sequencing with Integer Lengths . . . . . . . . .. ... ..
4.2 Set Packing . . . .. .. ...
4.3 Vertex Cover . . .. ..... 7 Hamiltonian Cycles
4.4 Satisfiability . . . . . .. ... 7.1 Hamiltonian Cycles and Paths . . . . . . ... ... ... ...
4.5 Minimal Maximal Matching . 7.2 Traveling Salesman . . . . . . ... .. ... ... ...

Problems with Inequalities 8 Tree P’_r?blems . ' . |
8.1 Minimal Spanning Tree with a Maximal Degree Constraint
5.1 Set Cover

L 8.2 SteinerTrees...........................:
) hts
5.2 Knapsack with Integer Weight 8.3 Directed Feedback Vertex Set . . . . . . . . . . . . . . .. ...

8.4 Undirected Feedback Vertex Set . . . . . . . . . . ... .. ...
8.5 Feedback Edge Set . . . . . . .. ... ... ...

9 Graph Isomorphisms

10 Conclusions



QUBO example: Max-cut Problem

Max-Cut is the NP-hard problem of finding a partition of
the graph's vertices into an two distinct sets that
maximizes the number of edges between the two sets.

Undirected Graph: G = (V, E)
— V: set of nodes, and E: set of edges

Partition vertices into two complementary sets such that
the number of edges between the two sets is as large as
possible. e
m TN
As the Max-Cut Problem is NP-hard, I

no polynomial-time algorithms for
Max-Cut in general graphs are

known.




QUBO example: Max-cut Problem

 The cost function to be maximized:

=Y (x,. - 2xixj) where x; € {0,1)

(i.))EE
x;+x;—2xx; = 1, if x; and x; belong in different sets .

s; €2, ={-1,1} X+ X — 2xixj =0, if x; and X; belong in the same set.

s; + 1

* Introducing x, = . the cost function can be rewritten

C(s) =% Z <1 - SiSj) — C(s) =% Z (1 — a?a?) (i’j).f the edge mdex

1] i ;. vertex index

(i,j))EE (i,)) el
. <1 0 ) c*]0) = 4+ 1|0) of : Pauli’s Z matrix actingon the i vertex
~\0 -1 ot |1y =—=1]1) c; : Pauli’s Z matrix actingon the j™ vertex
10) = <(1)> 1) = (?) Matrices = linear operators = observables

Eigenvalues = what are actually measured in experiments



Combinatorial problems at the LHC

« Assuming 2 — 2 production
with subsequent decays,
identification of an event-
topology becomes a binary

classification, with pn—1

) possibilities.
PP — {v;} PP — {v;} U {v;} PP —> AUB
« Combinatorial problem: What
FIG. 1. (a) n-observed particles (b) Dividing n particles into would be an efficient way of
two groups for 2 — 2 process (c) Identified event-topology assigning all observed
with A and B. particles in two decay chains?
p; 1s the momentum of constituent of A if x; =1 Py = Zpi T
1

p; 1s the momentum of constituent of B if x; =0 P, = Z pi (1 —x;)

)

Minimize the mass difference: H = (P} — ]322)2 for all possible combinations of x;

Hybrid quantum-classical approach for combinatorial problems at hadron colliders, 2410.22417

Leveraging Quantum Annealer to identify an Event-topology at High Energy Colliders, 2111.07806



Combinatorial problems in the top quark production

vl [ Va
3 (

a) j2
J1 .
J .
J

Hy =

]

_(p2 _ p2)? 2
Hy = (P; — P5) = (izPij[(lﬂLSi)(lﬂLSj)(151‘)(133’)})

2
Zpijsi) == %: JijSiSj 3 Pl] — pi . p]

Py = sz'(l—ﬂ?z‘),
i=1

Hy = <P12+P22)
— ZPU 1+S)(1+83)—|—(1—Si)(1—8j)} A=

% - E P’L]S’LSJ 9

Hybrid quantum-classical approach for comblnatorial problems at hadron colliders: 2410.22417

Hp = Ho + AH;



Quantum Approximate Optimization
Algorithm (QAOA)

1
Hp=C(s) =H,= ) Z <1 — afajz> : Problem Hamiltonian
(i.))EE

Farhi et al 2014

(i,j) : the edge index
[ : vertex index
Hy,, =B =Hy= Z GJ-X : Mixer Hamiltonian (Initial Hamiltonian)

G I
J \ k
Full Hamiltonian:  #() = <1 . %) Hy+ - Hp -
t p
) =exp |~i [ H@)at| o) —exp | <130 HGANA| i) 5
0 j=1 -
» Ay Ay Undirected Graph: G = (V, E)
_ J J V: set of nodes
~ Hexp [—ZAt [(1 - T) Hyr + THP” [%0) E: set of edges
j=1

P - . .
~ H exp | —iAt (1 — ‘JTN) HM] exp [—iAt‘%Ath] 1%0)
- Works in the adiabatic limit or p — o0

— ];Ilfzxp :_ijM] exp [—mjﬂplm()) :> v, 8) = ﬁ U(Hwm, B;)U(Hp, ;) [+)°"

7 \\

= = j=1
U(Hpwr,B5) U(Hp,v;)




Maximum Likelihood detection
QAOA Traveling salesman problem
Scheduling management

eiﬂpV

Unstructured search
o /T Graph coloring

R RS

Max-cut
QAOA ﬂp//'U(ﬁp) = exp (—iﬂpHM)
" : }/p U(y,) = exp <_i7pHP>

NN N N N N NN N

Ay =0 (in)
Z hamqum 7/2

U(y,) = exp (—iy,Hp)

0!0) ,Bl Uip,) = exp(—iﬁ1HM)

/mmMJLujluluL

enCo) | 0) )
>10)




a) b) Problem Unitary Unitary Q)
e oo oo QAOA
: ) M) 1 :r N\ 2 27
, 58 { l-l
E — ! E > MA-QAOA
A — : (=4 & XQAOA
N L) (=)
1 _\—J—w— : L ! Laj r
| — V! — R.(25) QAOA
¥ — : t : ﬁ
= ey Of  EEER weanon
— U
e Ry —[R 251){Ry 204Z XQAOA
Graph Quantum Ansatz

FIG. 1: a) A specific instance of a graph for which we want to identify a set of vertices that maximises the number
of edges that are cut. b) A quantum circuit with a single iteration of a quantum ansatz applied to it. The quantum
ansatz consists of a unitary operation specific to the problem being solved and a problem-independent mixing
unitary. ¢) Decomposing the problem and mixing unitaries for QAOA, MA-QAOA, and XQAOA into CNOT and
single-qubit rotation gates.

« QAOA: one parameter for each mixer layer

. ma-QAOA: n, parameters for each mixer layer

. XQAOA: 2nq parameters for each mixer layer

Multi-angle Quantum Approximate Optimization Algorithm: 2109.11455
An Expressive Ansatz for Low-Depth Quantum Approximate Optimisation: 2302.04479



Feedback-based ALgorithm Quantum

Optimization (FALQON)

Step 0

Step 1

Step 2

Step 7

\_

(a)\

B =0 Step k

A, QuasoE

=

A ﬂ2= — A

III Set 5, = — A,

*(— Layer 1 =>: . Estimate A;

I Prepare qubits in state |y;) = U, (B)U,--Uy(B)U,
I1 Measure qubits to estimate A, = (y; | i[H, H,] |y

(b)

| wo)

I II ITI

A, HuasoH U, Quask fAAE _ o, (c)
: 2 ﬁ 3— = A2 (H )2
€— Layer 1 ->¢— Layer 2 —»: | | Estimate A, m < Yo R A
. II N

I E‘.‘j ...... Q<.I.{l’>.3. -
— i - 1 I _ 1 L (Hp>f
v, Rucol v, Qa3 v s E= AR et
<— Layer 1 —>(— Layer 2 —> <= Layer £ —> | Lbasis s) k 2 L:yer 4

Figure 1. (a) The procedure for implementing FALQON. The initial step is to seed the procedure by setting 51 = 0. The
qubits are then initialized in the state |10), and a single FALQON layer is implemented to prepare |¢1) = Uq4(B1)Up|tbo). The
qubits are then measured to estimate A1, whose result is fed back to set S2 = — A1, up to sampling error. For subsequent steps
k=2,--- £, the same procedure is repeated, as shown in (b): the qubits are initialized as |¢o), after which k layers are applied
to obtain |¢g) = Ua(Br)Up - - - Ua(B1)Up|to), and then the qubits are measured to estimate A, and the result is fed back to set
the value of B41. This procedure causes (Hp) to decrease layer-by-layer as per (¢1|Hp|1)1) > (¥o|Hplth2) > -+ > (Y| Hp|be),
as shown in (c), such that the quality of the solution to the combinatorial optimization problem monotonically improves with
circuit depth. The protocol can be terminated when the value of (H,) converges or a threshold number of layers ¢ is reached.
Then, after the final step, Z basis measurements on [¢¢) can be used to determine a best candidate solution to the combinatorial
optimization problem of interest, by repeatedly sampling from the probability distribution over bit strings induced by |¢,) and
selecting the outcome associated with the best solution.




» Simulated various quantum algorithms using
PennylLane to resolve combinatorial ambiguity
in the top quark production (6 jets)

— QAOA, ma-QAOA: Adam optimizer used
— FALQON: no classical optimization needed

» Compared performance against hemisphere
method and classical ML (using SPANet)



Parton-level truth and hemisphere method

Reconstructed mass parton-level truth

- 79% overal efficiency

No mass information
used.

ImeV)
8 g
Fracti f E t

Hybrid quantum-classical
approach for combinatorial

Jet assignment problems at hadron colliders:
2410.22417

5

3
m; (GeV) Number of jets

Hemisphere method

™ lcev)
Fracti f E t:

+ | 50% overal efficiency

D

No mass information
Reconstructed mass

used.

250 2 3
m; (GeV) Number of jets

m, Jet assignment



MCleV)

m; (GeV)

Reconstructed mass

m; (GeV)

Reconstructed mass

QAOA method

Fraction of Events

Fraction of Events

Nmb of jets

Jet aSS|gnment

3
Number of jets

Jet assignment

parton-level truth

79% overal efficiency

(Best result
expected with the
given Hamiltonian)

Hybrid quantum-classical
approach for combinatorial
problems at hadron colliders:
2410.22417

QAOA
55% overal efficiency

No mass information
used.



NI

m; (GeV)

ma-QAQOA and FALQON

N s 3Y)
g g

Reconstructed mass

m; (GeV)

Reconstructed mass

150

100

Fraction of Events

Fraction of Events

B9

3
Number of jets

Jet assignment

3
Number of jets

Jet assignment

ma-QAOA
/5% overal efficiency

No mass information
used.

Hybrid quantum-classical
approach for combinatorial
problems at hadron colliders:
2410.22417

FALQON

/2% overal efficiency

No mass information
used.



FALQON

Comparison

Efficiency using H = (P — P3)2 + A(P# + P3)

where A = min(/jj)/max(P;)

1.0
I — —
| Hemisphere

0.8 ] [ ——— |
!
1
..... |_
0.6 AO— .

- : |

g % | 4

9 T I

|

L

0.4 - . -
: |
| ' '
< f |
< l |
0.2 - : |
| -
= = = Quantum Annealer |
%900 1.25 1.50 175 2.00 2.50 3.00
met/2my¢
» Velocity

Quantum annealer

Hamiltonian
limit

QAOA
[p= 8]

ma-QAOA
[p=28]
FALQON
[p=200]

Hemisphere
method

Hybrid quantum-classical
approach for combinatorial
problems at hadron colliders:
2410.22417



Efficiency

Combinatorial problems in the top quark production

1.0 —
....... e LLIL AL 1.0
[ — Famitorian e Y S
........ | limit | m———
08{ T imi——— I E— :
: — 0819 .......... p=——=-
i QAOA : .
i L B - SPANet: Generalized
. — — o — . Ma-QAOA a .
r lp=3 £ 0.6 permutationless set
T 1 A P FALQON S . .
| -0 | & assignment for particle
"""" —— — . — Hemisphere 1] h . . t
| method 2 04l physics using symmetry
0.4 i e . .
P preserving attention
!
| 0.2 ,
! —— SPANet 1 mil events 518k params
. .- 0 1+t 000 || SPANet 100k events 68.3k params
B —== SPANet 20k events 19k params
0.0 T T T T T T T T T
s Quantum Annealer 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
%900 125 150 175 2.00 250 3.00 mtt/(2mt) _
met/2me ml'l'
matching accuracy (efficiency
Methods ( ) Ntrain Tparameters depth (p) NCNOT NRy NRx zmt‘
parton-level smeared events
Hemisphere 50% 48% N/A
QAOA 55% 53% 16
240 120 48
ma-QAOA 75% 73% 168
N/A
FALQON 72% 69% 2 7,500 3,750 1,500
VarQITE 79% 7% 15 30 15 30
5 6 . .
SPANet o o e 1 N/A Hybrid quantum-classical
81% 62% 2% 10* | 1.9 x 103 approach for combinatorial

Table 1: Summary of the performance of various methods and the corresponding parameters.

problems at hadron colliders:
2410.22417



Variational Quantum Imaginary Time
Evolution (VarQITE)

« State time evolution under a Hamiltonian: ly () = 2 C exp( - zEm%> | m)
 Imaginary time,t — —if
_ p p
lw(f)) = ; C,, exp( —Em%) |m)ﬁ : O;'O exp( — E()%) |0)
o B_ATHh|W>
All coefficients decay 10) = lim lw(B)) Y1) = —— "
p—co [y (B le=2 Ty

« InVarQITE, |w(p)) is replaced with |y (6(f))) with variational parameters 6.
Using McLachlan variational principle, the algorithm update variational

parameters @ by minimizing H( O e ), <9(ﬂ)>H
op ﬁ)

2404.16135, Performant near-term quantum combinatorial optimization

1901.07653, Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution

1812.08767, Theory of variational quantum simulation



Success probability

V

ar

QITE Ansatz (with lonQ)

15 parameters
no classical optimizers needed

Success probability of
finding the global minimum

1 b
2 _D N 9 12 AL
U\ N G AN o
5 _@ Janl 9 WanY N (LD Jan N M WanY
A G RNy DU v G R
R _@ a9 Wa a9 Wa A M WanY M (o LA
1" J 1 A G RNy s G R A G RN
_D D D M D N D Ao DD D
w2 G N v G RN v G RN A G puaera Gl By
Performant near-term quantum combinatorial optimization : 2404.16135
6 jets, Ho + AH; 6 jets, Ho + AH,
1.0 4 1.0 A
—— AFJE<107° o ——=- AFE<107°
—— Bruteforce
0.8 - 0.8
0.6 S 0.6
=
@ Success rate of finding the global minimum = 0.926
g
0.4 - Y 0.4- Overall efficiency = 0.658
0.2 1 024
0-0 T 0.0 T T T T T
1.00 1.25 1.00 1.25 1.50 1.75 2.00 2.50 3.00
Mee/2mi

Efficiency of resolving the
combinatorial problem



Parton-level truth and hemisphere method

Reconstructed mass parton-level truth
- 79% overal efficiency
| ; No mass information
m%—
- : used.
mt 0 1 2 4 5 6 | |
L] Hybrid quantum-classical
me(Gew) 1 Number o ets 5 ' approach for combinatorial
Jet aSS|gnment problems at hadron colliders:
500 Lo ' ess 2410.22417
4501 0.91
4001 0.8
3501 g 0.7
3001 L% 0.6
M=o 5 o) VarQITE method
200+ ; .S 0.41 . .
o] A 3 3 79% overal efficiency
: i 0.31
o » 02 ~ No mass information
%0 50 100 150 200 250 300 350 400 450 500 0.0 — e BA— '

m, Jet assignment



Summary

 This field combines physics, math, computer science, and
engineering — so whatever you're into, you can be part of it.

* Quantum computers could revolutionize many areas such as
security, medicine, materials, Al, climate modeling, and more.

— Quantum biology, quantum finance, post-quantum secuirity,

* It's a young field — we need your ideas, your questions, and
your creativity.

 \What You Can Do Now:

— Get curious: try a quantum simulator (like IBM Quantum
Experience).

— Learn linear algebra and probability — they’re the language of
quantum.

— Ask "what if?" — because today's science fiction is tomorrow’s
technology.



Data re-uploading for a universal quantum classifier
1907.02085

Processing > v QCP

10)—

(a) Neural network (b) Quantum classifier

* Universal approximation theorem

« We can approximate a function F(x) with (X, 0), where X is an input feature
and 5 is a learnable parameter. )

. The cost function (ex. MSE) to be minimized is Z | F(X)) — f(X;, 0) |

i=1



Single qubit classifier using data re-uploading

- Consider the three dimensional data, X. (can be generalized.) 1907.02085
- Date can be re-uploaded using unitary transformation U(X) rotating the qubit.
» The single-qubit classifier has the following structure: ) = U(gg 7)0)

U($,%) = L(N)...L(1) L(i) = U(¢:)U(7) b = (b, da 3)
U, T) = U(pn)U(T) ... U(¢1)U(Z) U, d,, 3) € SUQR)
L(1) L(N)
- == — r- - == = L(i):U<§i+wz-oa?>
0) HU @) = U(¢) [t HU @) | U(dn) A
o — _ _ = | L — _ il

Hadamard product of W; and X:

(a) Original scheme

L(1) L(N) W; 0 & = (wilxl,w?x2,wf’x3)
— — = 71 [
0) HU (abl,f) — HU (qu,a?) —— A Lp=vu (92?’” + g™ of(k)) U (975” + g of(1)>
1 e |
(b) Compressed scheme The number of parameters = 3 N

-
—

U($) = Uy, pa, p3) = €207 ¢i19u¢ids0= or  U() = £¥(9)7



Example: binary classification

0.5 1 X?‘"

> 0.0, Qubits 1 2
o) Layers No Ent. Ent.
| L I [050| 075 -
_1.2_1.0 -05 00 05 1.0 _1.2;.‘:&&.2;’.;%.0.'0 0.5 1.0 2 085 080 073
@ 1 layer b) 2 layers 3 |08 | 08l 0093
4 090 | 0.87  0.87
5 0.80 | 090  0.93
6 092 | 092  0.90
8 093 | 093  0.96
10 095 | 094  0.96

R LI
ST g
,";v, s .

e
RUER

o
eRely S T

-1.0 -05 00 05 1.0 -1.0 -05 00 05 1.0
X X
(c) 4 layers (d) 8 layers

The number of parameters = 3 N

1907.02085



Example: 4 classes

X
. 1 2
-1.0 =05 o:.'.c;“ 015. .1.:.0 -1.0 -05 o.'ic;‘: 0.5 ‘1;.0 Layers NO Ent Ent
* ) 1 0.73 | 0.56 -

2 0.79 0.77 0.78
3 0.79 0.76 0.75
4 0.84 0.80 0.80
D 0.87 0.84 0.81
6
8

0.90 0.88 0.86
0.89 0.85 0.89
10 0.91 0.86 0.90

(c) 4 layers (d) 10 layers

1907.02085



Example: 3 classes

(e) 5 layers

1907.02085

(f) 6 layers

1.0
0.5
> 0.0
-0.5
-1.0
-10 -05 00 05 10 -10 -05 00 05 10
X X
(c) 3 layers (d) 4 layers
1.0
0.5
> 0.0
-0.5
-1.0
-10 -05 00 05 10 -10 -05 00 05 10
X X
(g) 8 layers (h) 10 layers

X7

Qubits 1 2

Layers No Ent. Ent.
1 0.34 0.51 —
2 0.57 0.63 0.59
3 0.80 0.68 0.65
4 0.84 0.78 0.89
5 0.92 0.86 0.82
6 0.93 0.91 0.93
8 0.90 0.89 0.90
10 0.90 0.91 0.92




Single qubit classifier: example

Problem

Classical classifiers

Quantum classifier

NN SVC X7 X f

Circle 0.96 0.97 0.96 0.97

3 circles 0.88 0.66 0.91 0.91
Hypersphere 0.98 0.95 0.91 0.98
Annulus 0.96 0.77 0.93 0.97
Non-Convex 0.99 0.77 0.96 0.98
Binary annulus | 0.94 0.79 0.95 0.97
Sphere 0.97 0.95 0.93 0.96
Squares 0.98 0.96 0.99 0.95
Wavy Lines 0.95 0.82 0.93 0.94

Comparison between single-qubit quantum classifier and two well-known classical
classification techniques: a neural network (NN) with a single hidden layer composed
of 100 neurons and a support vector classifier (SVC), both with the default parameters
as defined in scikit-learn python package. This table shows the best success rate, being
1 the perfect classification, obtained after running ten times the NN and SVC
algorithms and the best results obtained with single-qubit classifiers up to 10 layers.

1907.02085






Quantum Annealing
(Gradient-Free quantum optimization)

Hp Is the problem Hamiltonian whose ground state encodes the solution to the
optimization problem

H,, is the initial Hamiltonian whose ground state is easy to prepare.

Prepare a quantum system to be in the ground state of H; and evolve the system
using the following time-dependent Hamiltonian,

5 5
H() = (1 ——)H +—H
) ) 0T
The system will remain to its ground state at all times for a large T, which means
for t=T, the system will be in the ground state of Hp, our problem Hamiltonian.

D-wave has built Quantum Annealing that solves optimization problem by
transferring the original optimization to a hardware, that allows nearest neighbor
interaction of qubits.

Compared to the processing time of O(2*n) with the simplest but a robust brute-
force scanning algorithm with a classical computer, a quantum annealer can have
an enormous advantage in the computation complexity as 1, . ) ~ 0(n?) < 0(2")

Apolloni, Bianchi, De Falco 1988



Quantum Approximate Optimization
Algorithm (QAOA)

« Abstract: We introduce a quantum algorithm that 1411.4028, E. Farhi, J. Goldstone, S. Gutmann
produces approximate solutions for combinatorial
optimization problems. The algorithm depends on a
positive integer p and the quality of the
approximation improves as p is increased. The
quantum circuit that implements the algorithm
consists of unitary gates whose locality is at most the
locality of the objective function whose optimum is
sought. The depth of the circuit grows linearly with p
times (at worst) the number of constraints. If p is
fixed, that is, independent of the input size, the
algorithm makes use of efficient classical 400
preprocessing. If p grows with the input size a
different strategy is proposed. We study the
algorithm as applied to MaxCut on regular graphs 200
and analyze its performance on 2-regular and 3-
regular graphs for fixed p. For p = 1, on 3-regular
graphs the quantum algorithm always finds a cut that 0
is at least 0.6924 times the size of the optimal cut. 2014 2017 2020 2023 2025

Citations per year

500

300

100



Experimental realization _

PRL 110, 230501 (2013) PHYSICAL REVIEW LETTERS 7 JUNE 2013

S

Experimental Quantum Computing to Solve Systems of Linear Equations

X.-D. Cai,' C. Weedbrook,” Z.-E. Su,' M.-C. Chen,' Mile Gu,>* M.-J. Zhu,' Li Li,"* Nai-Le Liu,""
Chao-Yang Lu,"* and Jian-Wei Pan'
'Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,

University of Science and Technology of China, Hefei, Anhui 230026, China
*Center for Quantum Information and Quantum Control, Department of Electrical and Computer Engineering,
and Department of Physics, University of Toronto, Toronto M5S 3G4, Canada
3Centre for Quantum Technologies, National University of Singapore, Singapore 117543

*Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
(Received 6 March 2013; published 6 June 2013)

Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly
growing data sets, such a task can be intractable for classical computers, as the best known classical
algorithms require a time proportional to the number of variables N. A recently proposed quantum
algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving
an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm,
solving 2 X 2 linear equations for various input vectors on a quantum computer. We use four quantum bits
and four controlled logic gates to implement every subroutine required, demonstrating the working
principle of this algorithm.

"A two-gubit photonic quantum processor and its application to solving systems of linear equations". Scientific Reports. 4: 6115.
“Experimental realization of quantum algorithm for solving linear systems of equations". Physical Review A. 89 (2): 022313

Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing, Phys.Rev.Lett. 122 (2019) 6, 060504
===> "Experimental realization of quantum algorithms for a linear system inspired by adiabatic guantum computing". Phys. Rev. A 99,

012320. 8 dimensional linear equation.



https://www.nature.com/articles/srep06115
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.89.022313
https://arxiv.org/pdf/1805.10549
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.99.012320
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.99.012320

P vs NP

In Theoretical Computer Science, the two most basic classes of problems are
P and NP.

P includes all problems that can be solved “efficiently”

— For example: add two numbers. The formal definition of "efficiently" is in time that's
polynomial in the input's size.
NP (nondeterministic polynomial (time)) includes all problems that given a
solution, one can efficiently verify that the solution is correct.
— An example is the following problem: given a bunch of numbers, can they be split into
two groups such that the sum of one group is the same as the other. Clearly, if one is

given a solution (two groups of numbers), it's simple to verify that the sum is the
same. (This is a partitioning problem).

What's unknown is whether problems such as the one above have an efficient
algorithm for finding the solution. This is the (in)famous (unsolved) P = NP
problem, and the common conjecture is that no such algorithm exists.

Now, NP hard problems are such problems that were shown that if they can be
efficiently solved (which, as mentioned, is believed to not be the case), then
each and every problem in NP (each and every problem whose results can be
efficiently verified) can be efficiently solved. In other words, if you're up to
showing that P=NP, you might want to take a stand at any of those NP-hard
problems since they are "equivalent” in some way to all others.
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True Positive Rate

Equivariant Quantum Neural Networks
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Let V and W be sets, and f: V — W a function.
If a group G acts on both V and W, and this action
commutes with the function f:

2205.0736

flx-v)=a-f(v) forallveV, xed,

then we say that f is G-equivariant. The special case
where G acts trivially on W is called G-invariant.

flz-v) =z f(v) forallv e V
Let V = W be the set of all

f
images. Let the group G = {1,z} = Z/27Z act on V ’
via top-bottom reflection, i.e., x - v is the image whose
value at (p1,p2) is v(p1, —p2). Let o: R3 — R3,

o= {000 e !

b) =
(255, 255,255) otherwise.
Here (0,0,0) and (255,255, 255) are the RGB encod- f
ings for pitch black and pure white respectively. So
the map f: V — V, f(v) = oo v transforms a color

image into a black-and-white image.




Qubits and Pauli’'s matrices

_ :< ) + Qubit (|y), |w)) = (wly) = 1):
0
0 . 0 COS =
0 |ly) =cos—|0) +e?sin—|1)=| .
- = 2 2 ¢ sin £
[ O 2
_ 7 ( 0 > « Conjugate (dual vector or bra-vector):

0 . 0 |
<l/j| = COS 5(0' + e—l¢ Sin 5(1 | - (Cosg e—lq[) Siﬂ%)

lo;,0,] = 0,0, — 0,0, = 2i€;0

- Aset of all | ) (ket-vector) forms a vector space

{0;,0;} = 0;0;+ 0;0;=125; (Hilbert space)

6,6,=25.+i€, 0 - Pauli’'s matrices are generators of rotations in two
L Yy y . .
dimensional complex plane.

10) = (é) , )= <(1)> Computational basis

R(@)-exp(—la2 >
| +) 0=x1h _ 1 < 1 ) Hadamard basis
V2 V2 \£1

Ql




Bloch Sphere

« Each (normalized) state of the qubit can be uniquely associated
with a point on the unit sphere. 10)

sin @ cos ¢
lw) <— (0,¢) <= 7 =]sinfsing

0) + i]1)
cos @

V2

|0) + 1)
V2

0
|0): 8 =0,¢ = arbitrary — 7 = (O>
1

0
| 1) : 0=7r,gb=arbitrary—>f’=(0>
-1

1 0
|+>;Q=ﬂ/2,¢=0—>?=<0> |+i):6’=7z/2,qb=7t/2—>f"=<l>
0 0

—1 0
| =) 0=7z/2,¢=ﬂ—>f’=<0> [+ 9=ﬂ/2,¢=3ﬂ/2—>f=<—1>
0 0
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Quantum Measurements

 When we perform a measurement onto an orthogonal basis, the
qubit collapses to one of the basis states with probability given by
the corresponding amplitude. For example, if we perform a
projection onto z-axis (the states |0) and | 1)), we get

0 0
P0) = | (0] w)|* = cos25 and P(1) = [{1|y)|* = sinza.

« Born rule: the probability that a state |y) collapses during a
projective measurement onto a basis { |x), |x1)} is given
by P(x) = [{x|y)|* and P(x*) = | (x"|y) |*.

( 0
COS —

0 . 0
|lyw) =cos—|0) +e“@sin—|1) =]
2 2 e'? sin —
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Transmon qubit: Capacitor + Josephson junction (JJ)

IS

w

N

Energy [wo]

=

0

L, SR |
Gi P T
=
\Transmon /
7 12)
g ] /|1>
Q. @© 4
e 5{ \pwo]
S £ +/10)
-T -T2 0 /2 T

Superconducting phase,qb



Traveling salesman problem (TSP)

« Given a list of cities and the distances between each pair
of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

 |tis an NP-hard problem in combinatorial optimization,
iImportant in theoretical computer science and operations
research.



https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Operations_research

Traveling salesman problem (TSP)

Performance of the Bellman—Held—Karp algorithm
Time Complexity
_ The Bellman-Held-Karp algorithm has a time complexity of 0(772"), where n is the
number of cities.

— This means the runtime increases exponentially with the number of cities, making it
impractical for very large instances of the TSP.

— However, this is still significantly better than the brute-force approach that has a time
complexity of @O(n!), where 'n' is the number of cities.

Space Complexity

— The algorithm has a space complexity of O(n2").

— This is due to the algorithm needing to store intermediate results in a table, especially
for storing the shortest path costs for all possible subsets of cities and destination cities.

— This space requirement can become a limiting factor for larger problems as well.

Query complexity of QAOA on TSP: O(y/n!). (n?2" > +/n! for a large n)

— Challenges
* Implementing QAOA on real quantum hardware
» Optimization of Parameters:



Ising formulations of many NP problems, 1302.5843

Traveling salesman problem (TSP)

- Label vertices 1,---, N and the edge set (#Vv) to be directed. (For undirected, add (uv) and (vu)).
+ Introduce N2 bits X, ;» Where v represents the vertex and i represents its order to the edge set.
» Every vertex can only appear once in a cycle, and that there must be a j-th node in the cycle for each j.

« For the nodes in our prospective ordering, if Xy, j and X, j+1 are both 1, then there should be an energy
penalty if (uv) & E.

2
n N n N
HAAz(lzxv,j) +Az(l—z%) W S R

(wv)¢ E j=1 112345

« A > 0O is a constant. The ground state of this system has H = 0, only if we
have an ordering of vertices where each vertex is only included once, and

adjacent vertices in the cycle have edges on the graph —i.e., we have a
Hamiltonian cycle.

* The traveling salesman also needs to m|n|m|ze the total traveling distance

(weight)
HB =B Z uUv qu,jxv,]—Fl
(uwv)eE

m[{O(O|T|>

« B should be small enough that it is never favorable to
violate the constraints of H. 0 < Bmax(W,,) < A

AEBCDA
Hyy = Hp = Hy + Hp 1+8+3+6+1 = 19
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Where Quantum Computers Fit In

he map at the right depicts how the class of problems that quantum computers
would solve efficiently (BQP) might relate to other fundamental — s 2 »
classes of computational problems. (The irregular border signifies that B o R e _ ] nxnchess

EXAMPLE PROBLEMS

BQP does not seem to fit neatly with the other classes.) _ ~ PsPACE B 1% nGo

The BQP class (the letters stand for bounded-error, guantum, W Box packing
polynomial time) includes all the P problems and also a few other NP Map coloring
problems, such as factoring and the so-called discrete logarithm ;’i':"snfdf:fm"

problem. Most other NP and all NP-complete problems are believed to
be outside BQP, meaning that even a quantum computer would require
more than a polynomial number of steps to solve them.

In addition, BQP might protrude beyond NP, meaning

—t— Graph isomorphism

Harder —————

Factoring
Discrete logarithm

that quantum computers could solve certain problems - e M Graph connectivity
faster than classical computers could even check the e > /| — 1 Testingif anumber
answer. (Recall that a conventional computer can W = . S Sapnme

o : {\\ 225 = @ Matchmaking
efficiently verify the answer of an NP problem but can \\ weqE -

efficiently solve only the P problems.) To date, however, no
convincing example of such a problem is known.

Computer scientists do know that BQP cannot extend
outside the class known as PSPACE, which also contains all the
NP problems. PSPACE problems are those that a conventional
computer can solve using only a polynomial amount of memory -
but possibly requiring an exponential number of steps.

Efficiently solved by
classical computer

Scott Aaronson, The Limits of Quantum Computers, Scientific American Magazine 298(3), 62-69 (2008)



The exponential Speed-Up



The exponential Speed-Up

Learning Problem Classical Algorithm Quantum Algorithm Reference
* k-means problem: Lloyd, Seth, Masoud Mohseni, and Patrick
v" Assigning M vectors to k clusters in a way that 2 Rebentrost. "Quantum algorithms for
minimizes the average distance to the centroid O(M=N) O(Mlog(MN)) supervised and unsupervised machine

of the cluster learning." arXiv preprint arXiv:1307.0411 (2013).

* Principle component analysis (PCA)

problem: Lloyd, Seth, Masoud Mohseni, and Patrick
v" To convert a set of observations of possibly O((:I2 Iog R+d Rz) O(R Iog d) Reben.trc:st. “Quantum principal component
correlated variables into a set of values of linearly analysis." Nature Physics 10.9 (2014): 631-633.
uncorrelated
* Support vector machine (SVM) problem: P. Rebentrost, M. Mohseni, S. Lloyd,
v’ To classify data clusters with support vector O(NM) O(log(NM)) “Quantum Support Vector Machine for Big
learning Data Classification,” PRL 113, p.130503, 2014.
* Quantum Neural Network (QNN) problem: S. Gupta and R.K.P. Zia, “Quantum Neural
v" Qubit (or Node) requirement for neural network (0) (ND) (0) (log(N)) Network,” Journal of Computer and System
machine learning Sciences 63, 355-383 (2001).

. . M. Schuld, M. Fingerhuth, and F. Petruccione
* Classification Problem: & g . ¢

. : 3 “Implementing a distance-based classifier with
% Ins?:a.nt measure of hamming distance among O(M ) 0(1) ? a quantum interference circuit,” EPL, v119,n6,
training vector data and query vector oo i g : :

* Learning parity with noise (LPN) problem: o
v" For given some samples (x, f(x)), estimating the N queriesin a

function f computing the parity of bits at some noiseless channel
fixed locations channel

0(|OgN) queriesina A.W. Cross, S. Graeme, and J.A. Smolin.

noisy (depola rizing) “"Quantum learning robust against noise."
Physical Review A 92.1 (2015): 012327.



Q1: solve for “X”

x2 +1
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from Welch Labs



USC Study Demonstrates
Unconditional Exponential Quantum
Scaling Advantage

« Demonstration of Algorithmic Quantum

Speedup for an Abelian Hidden Subgroup
Problem



https://journals.aps.org/prx/pdf/10.1103/PhysRevX.15.021082
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.15.021082
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.15.021082

Ising Model

Mathematical model for a ferromagnetism in statistical
mechanics.

The energy of spin configuration for a given lattice is
given by the following classical Hamiltonian

E(s)=—2]ljsls—2hlsl s=1{s1, s;€{-L1}

Jij Is called an interaction, spin- spln coupling, and #; is an external

magnetic field, interacting with spin s;.
The configuration probability is given by the Boltzmann distribution
o~ PHG) 1

e e PR

Quantum Ising model: H = — ZJU o7 07 — Z h; o



Combinatorial problems in the top quark production

b 6 b
a /& S o, & A a/flt
q .::. 3 ‘!‘,"“
_y \'..‘ S t © W™ ” /
a / ve O a / ve
DOOODOO0 5
b ) g _—b
0.."‘ ..... t S
q ."“"‘4
=/ q % W~ =/ q
v/ q v/ q
/ o * Fully hadronic channel:
* b- a.mblgwt_y _ 26 = 64 possibilities for 6
(Semi-leptonic and dilepton) particles in the final state.
But in reality, 10-20 jets
Ht, mbl CDF . i
_ appear in the final state,
pt, mbl 1009.2751, Rajaraman, Yu leadi " 210 220
MT2, mbl 1109.1563, Baringer, Kong, McCaskey, Noonan €ading 1o )

. ossibilities.
MT2, mbl, MAOS, hybrid 1109.2201, Kim, Guadagnoli, Park P

M2, mbl, hybrid 1706.04995, Debnath, Kim, Kim, Kong, Matchev
NN 2202.05849, Alhazmi, Dong, Huang, Kim, Kong, Shih



