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Presentations on quantum 
computing at this workshop

• From Bits to Qubits: A Beginner’s Journey into Quantum 
Computing (Tuesday, KC Kong) 

• Quantum Computing for Machine Learners: A New Frontier 
(Tuesday, KC Kong) 

• Enhancing quantum utility: Simulating large-scale quantum 
spin chains on superconducting quantum computers 
(Tuesday, Talal Chowdhury) 

• Quantum Machine Learning Applications in High Energy 
Physics and Beyond (Wednesday, Konstantin Matchev) 

• More talks on quantum physics 
• Many talks on AI education and outreach program



What is a quantum computer?
• A quantum computer is a new kind of computer 

that’s based on the laws of quantum physics.  
• It can do certain things faster than normal 

computers because it follows a different set of rules.



Very brief history of quantum computing
• 1925 The term “quantum mechanics” used by M. Born (Pauli, Heisenberg from U of Göttingen) 
• 1925 Formulation of matrix mechanics by Heisenberg, Born, Jordan 
• 1925-1927: Copenhagen interpretation  
• 1930 “The principles of quantum mechanics” by Dirac 
• 1935 Einstein, Podolsky and Rosen  
• 1935 “Quantum entanglement” and Schrödinger’s cat by Schrödinger and Einstein 
• 1947 “Spooky action at a distance” in a letter to M. Born by A. Einstein 
• 1976 Attempt to create quantum information theory  
• 1980 Quantum mechanical model of Turing machine by Benioff (ANL) 
• 1981 “Simulating Physics with Computers" by Feynman 
• 1985 Quantum Turing machine by Deutsch 
• 1992 Deutsch-Jozsa algorithm 
• 1993 First paper on quantum teleportation  
• 1994 Shor’s factoring algorithm (cf RSA encryption) 
• 1996 Grover search algorithm (Bell) 
• 2004 First five photon entanglement by China 
• 2011 First commercially available quantum computer (D-Wave) 
• 2017 First quantum teleportation of independent single-photon qubit (14km) by China 
• 2018 US National Quantum Initiative Act. 
• 2019 Google quantum supremacy  
• 2022 Nobel prize (Aspect, Clauser, Zeilinger) for violation of Bell’s inequality  
• 2022 433 qubits by IBM  
• 2023 Breakthrough Prize (Bennet, Brassard, Shor, Deutsch)

"Zur Quantenmechanik”   

 by Born and Jordan 1925

https://www.quantum.gov/


NATIONAL QUANTUM INITIATIVE 2018

https://www.quantum.gov




IBM
Université de Montréal

BB84, quantum cryptography, factoring algorithms, Deutsch’s algorithm

Oxford

MIT

Yuri Milner found the Breakthrough prize in 2012.



Data is obtained via InspireHEP

1053 papers in 2023

1176 papers in 2023

1999

1992

The number of papers (in high 
energy physics) that has a keyword 

“Machine Learning”, “Deep 
Learning”, “Artificial Intelligence” or 

“Neural Networks” in their title.

The number of papers that has a 
keyword “Quantum Computer”, ”
Quantum Computing”,“Quantum 
Annealing” or “Quantum Machine 

Learning” in their title.

• G. Cybenko, 1989 with sigmoid activation 
• K. Hornik, 1991, importance of the multilayer architecture  
• D Simon, 1993,  P. Shor 1994, 1995,  L. Grover 1996



What is Machine Learning?
• Typically problems in physics can be formulated in terms of a search for some 

function  , from the space of the observed  to a low dimensional 
space of a desired target space/label , which optimizes some metric (of our 
choice). The metric is often called a loss function and written as . 

• A learning algorithm would find the function that optimizes  over all possible 
values of .

f : 𝕏 → 𝕐 𝕏
𝕐

L( ⃗y, f( ⃗x))
L

( ⃗x, ⃗y)
• But this is intractable owning to the 

curse of dimensionality and an infinite 
number of functions to choose from. 
Instead one has labeled training data 

 sampled from . 
Furthermore the function space is 
restricted to a model - a highly flexible 
family of functions  parameterized 
by  

• Sounds familiar? 

{ ⃗xi, ⃗yi}N
i=1 p( ⃗x, ⃗y)

fϕ( ⃗x)
ϕ .
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As the system evolves, q traces a path
through configuration space (only some
are shown). The path taken by the system
(red) has a stationary action (δS = 0)
under small changes in the configuration
of the system (δq).[22]

The action, denoted , of a physical system is defined as
the integral of the Lagrangian L between two instants of
time t1 and t2 – technically a functional of the N
generalized coordinates q = (q1, q2, ... , qN) which are
functions of time and define the configuration of the
system:

where the dot denotes the time derivative, and t is time.

Mathematically the principle is[23][24]

where δ (lowercase Greek delta) means a small change. In words this reads:[22]

The path taken by the system between times t1 and t2 and configurations q1 and q2 is the one
for which the action is stationary (no change) to first order.

Stationary action is not always a minimum, despite the historical name of least action.[25][1]: 19–6  It
is a minimum principle for sufficiently short, finite segments in the path of a finite-dimensional
system.[2]

In applications the statement and definition of action are taken together:[26]

The action and Lagrangian both contain the dynamics of the system for all times. The term "path"
simply refers to a curve traced out by the system in terms of the coordinates in the configuration
space, i.e. the curve q(t), parameterized by time (see also parametric equation for this concept).

Origins, statements, and controversy
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If we replace  by , the time-evolution operator  is replaced by . (This change is known as a Wick
rotation.) If we repeat the derivation of the path-integral formula in this setting, we obtain[10]

,

where  is the Euclidean action, given by

.

Note the sign change between this and the normal action, where the potential energy term is negative. (The term
Euclidean is from the context of quantum field theory, where the change from real to imaginary time changes the space-
time geometry from Lorentzian to Euclidean.)

Now, the contribution of the kinetic energy to the path integral is as follows:

where  includes all the remaining dependence of the integrand on the path. This integral has a rigorous mathematical
interpretation as integration against the Wiener measure, denoted . The Wiener measure, constructed by Norbert
Wiener gives a rigorous foundation to Einstein's mathematical model of Brownian motion. The subscript  indicates that
the measure  is supported on paths  with .

We then have a rigorous version of the Feynman path integral, known as the Feynman–Kac formula:[11]

,

where now  satisfies the Wick-rotated version of the Schrödinger equation,

.

Although the Wick-rotated Schrödinger equation does not have a direct physical meaning, interesting properties of the
Schrödinger operator  can be extracted by studying it.[12]

Much of the study of quantum field theories from the path-integral perspective, in both the mathematics and physics
literatures, is done in the Euclidean setting, that is, after a Wick rotation. In particular, there are various results showing
that if a Euclidean field theory with suitable properties can be constructed, one can then undo the Wick rotation to
recover the physical, Lorentzian theory.[13] On the other hand, it is much more difficult to give a meaning to path integrals
(even Euclidean path integrals) in quantum field theory than in quantum mechanics.[nb 3]

The path integral is just the generalization of the integral above to all quantum mechanical problems—

Wick rotation and the Feynman–Kac formula

The path integral and the partition function

Z ∼ ∫ e−S Dx • Newton’s equation of motion 

• Maxwell’s equation 

• Schrodinger  / Dirac equation 

• General relativity 

• All other fundamental equation of motions  



Universal Approximation Theorem
•  A feed-forward network with a single hidden layer containing a finite 

number of neurons can approximate continuous functions on compact 
subsets of R, under mild assumptions on the activation function.n

• A. N. Kolmogorov, 1957 
• G. Cybenko, 1989 with sigmoid activation 
• K. Hornik, 1991, importance of the multilayer architecture  
• Z. Lu et al, 2017, with deep neural network and ReLu activation
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Let  be a nonconstant, bounded, and continuous function (called the activation function). Let 
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on 

is denoted by . Then, given any  and any function , there exist an integer , real
constants  and real vectors  for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form  are dense in .

This still holds when replacing  with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  and any , there exists a fully-connected ReLU
network  with width , such that the function  represented by this network satisfies

The theorem of limited expressive power for width-  networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  satisfying that  is a positive measure set
in Lebesgue measure, and any function  represented by a fully-connected ReLU network  with width 

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let  be a nonconstant, bounded, and continuous function (called the activation function). Let 
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on 

is denoted by . Then, given any  and any function , there exist an integer , real
constants  and real vectors  for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form  are dense in .

This still holds when replacing  with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  and any , there exists a fully-connected ReLU
network  with width , such that the function  represented by this network satisfies

The theorem of limited expressive power for width-  networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  satisfying that  is a positive measure set
in Lebesgue measure, and any function  represented by a fully-connected ReLU network  with width 

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let  be a nonconstant, bounded, and continuous function (called the activation function). Let 
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on 

is denoted by . Then, given any  and any function , there exist an integer , real
constants  and real vectors  for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form  are dense in .

This still holds when replacing  with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  and any , there exists a fully-connected ReLU
network  with width , such that the function  represented by this network satisfies

The theorem of limited expressive power for width-  networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  satisfying that  is a positive measure set
in Lebesgue measure, and any function  represented by a fully-connected ReLU network  with width 

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let  be a nonconstant, bounded, and continuous function (called the activation function). Let 
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on 

is denoted by . Then, given any  and any function , there exist an integer , real
constants  and real vectors  for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form  are dense in .

This still holds when replacing  with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  and any , there exists a fully-connected ReLU
network  with width , such that the function  represented by this network satisfies

The theorem of limited expressive power for width-  networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  satisfying that  is a positive measure set
in Lebesgue measure, and any function  represented by a fully-connected ReLU network  with width 

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let  be a nonconstant, bounded, and continuous function (called the activation function). Let 
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on 

is denoted by . Then, given any  and any function , there exist an integer , real
constants  and real vectors  for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form  are dense in .

This still holds when replacing  with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  and any , there exists a fully-connected ReLU
network  with width , such that the function  represented by this network satisfies

The theorem of limited expressive power for width-  networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  satisfying that  is a positive measure set
in Lebesgue measure, and any function  represented by a fully-connected ReLU network  with width 

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also



The Basics Fourier series Examples

Fourier series

Let p > 0 be a fixed number and f(x) be a periodic function

with period 2p, defined on (�p, p). The Fourier series of f(x) is
a way of expanding the function f(x) into an infinite series

involving sines and cosines:

f(x) =
a0
2

+

1X

n=1

an cos(
n⇡x

p
) +

1X

n=1

bn sin(
n⇡x

p
) (2.1)

where a0, an, and bn are called the Fourier coe�cients of f(x),
and are given by the formulas

a0 =
1

p

Z p

�p
f(x) dx, an =

1

p

Z p

�p
f(x) cos(

n⇡x

p
) dx, (2.2)

bn =
1

p

Z p

�p
f(x) sin(

n⇡x

p
) dx,
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Figure 3.1
The mother function of the Haar basis (a = 1, b = ½); Approximation with the Haar basis (n = 30)

Comment:
If we want an approximation with n + 1 Haar functions, the simplest construction is:
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We excluded a from the parameters, because changing a has no real effect on the
threshold function. Proving the approximation of the feed-forward neural networks by
building the Haar basis (1st order spline basis) is theoretically correct, but that
construction doesn’t give us an effective way of approximating functions. We can
notice that the number of used neurons can be reduced:

( ) )()()()()(),(
1

100
00

bxwwbxwbxbxwbxw i

n

i
iiii

n

i
ii

n

i
i −−+−=+−−= ∑∑∑

=
−

==
ϕϕϕϕ ,

where
n
ixi = ,

n
b

2
1= , ),(),( bxxbx ii −= , )()( ii xxx −= ϕϕ , { }ni ...0∈∀ .

At the left side 2(n+1) neurons required, but with a single trick, we can reduce it to:
n+1. With the reduced number of neurons the weights of the approximation are:
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Figure 3.2
The tent mother function; Approximation with tent functions (n = 10)

Comment:
We can use the trick of reducing the number of neurons again, and the similar
recursive formulas are valid for the weights as in case of the threshold function.

3.4. Case of the Logistic Function:

Theorem 3.4.1 (approximation with the logistic function):
An arbitrary continuous function, defined on [0,1] can be arbitrary well uniformly
approximated by a multilayer feed-forward neural network with one hidden layer
using the logistic function as activation function (ϕ) .

Idea of a proof (3.4.1):
With the notations of theorem 7.2. We can build a bell shaped basis/mother function
again with the trick of arranging the neurons (we can take the difference of two
shifted logistic function):

)()(),,( baxbaxbax −−+= ϕϕ

),,(),( baxxax ii −=
n
ixi =

Without the loss of generality we can fix b to an arbitrary nonzero value. We can
notice that the width of the bells depends only on the parameter a and the height of the
bells depends on the parameter b. For the proof we want the weighted sum of our
basis functions to interpolate at the points xi:
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Figure 3.3
The bell shaped basis function (a = 1, b = 1); Approximation with the bells (n = 8)

Hypothesis:
This kind of approach can be generalised to any monotone-increasing activation
function that has 0)0( ≠ϕ . For example for the threshold function and the piecewise
linear function. (See Appendix1 for an example in MapleV)

We used Gershgorin’s theorem during the idea of proof of theorem 3.4.1:

Gershgorin’s theorem:
Each eigenvalue of n

jiijaA 1,)( == lies in at least one of the Gershgorin disks:

≤− ∑
≠ij

ijii aazz : { }ni ..1∈

Comment:
If each pair of the n Gershgorin disks has an empty intersection, then each disk
contains exactly one eigenvalue of A, which is therefore simple.



ReLu = max(0, x)

Neural network is a function-approximator.
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Let  be a nonconstant, bounded, and continuous function (called the activation function). Let 
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on 

is denoted by . Then, given any  and any function , there exist an integer , real
constants  and real vectors  for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form  are dense in .

This still holds when replacing  with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  and any , there exists a fully-connected ReLU
network  with width , such that the function  represented by this network satisfies

The theorem of limited expressive power for width-  networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  satisfying that  is a positive measure set
in Lebesgue measure, and any function  represented by a fully-connected ReLU network  with width 

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

=

Example by Joe Klein

Rectified Linear Unit
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The theorem of limited expressive power for width-  networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function  satisfying that  is a positive measure set
in Lebesgue measure, and any function  represented by a fully-connected ReLU network  with width 

, the following equation holds:

Representation theorem
No free lunch theorem
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Fourier series
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Object identification
Taken from Vecanoi (Youtube Educational channel about AI)





Why Machine Learning?



▸ HL-LHC will reach 1 exabyte of data per year

CHALLENGE: BIG DATA
1 PB = 1000 TB
1 EB = 1000 PB

Taken from J. Duarte’s talk



• A very large number of collisions occur at a very high energy. 
• Proton bunches collider every 25ns. 
• 3.3 Terabyte hard drives/second. 10 Libraries of Congress/minute. 
• 100 full length DVD movies/second. 
• Data analysis requires full use of the worldwide Grid computing system. 
• Worldwide LHC Computing Grid used up to 485,000 computer processing cores at Run I.

9/27/20, 3)45 PM{\displaystyle \eta \equiv -\ln \left[\tan \left({\frac {\theta }{2}}\right)\right],}
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Spherical coordinates (r, θ, φ) as
commonly used in physics (ISO 80000-
2:2019 convention): radial distance r,
polar angle θ (theta), and azimuthal
angle φ (phi). The symbol ρ (rho) is
often used instead of r.

Spherical coordinates (r, θ, φ) as often
used in mathematics: radial distance r,
azimuthal angle θ, and polar angle φ.
The meanings of θ and φ have been
swapped compared to the physics
convention.

Spherical coordinate system
In mathematics, a spherical coordinate system is a
coordinate system for three-dimensional space where the
position of a point is specified by three numbers: the radial
distance of that point from a fixed origin, its polar angle
measured from a fixed zenith direction, and the azimuthal
angle of its orthogonal projection on a reference plane that
passes through the origin and is orthogonal to the zenith,
measured from a fixed reference direction on that plane. It can
be seen as the three-dimensional version of the polar
coordinate system.

The radial distance is also called the radius or radial
coordinate. The polar angle may be called colatitude, zenith
angle, normal angle, or inclination angle.

The use of symbols and the order of the coordinates differs
among sources and disciplines. This article will use the ISO
convention[1] frequently encountered in physics:  gives
the radial distance, polar angle, and azimuthal angle. In many
mathematics books,  or  gives the radial
distance, azimuthal angle, and polar angle, switching the
meanings of θ and φ. Other conventions are also used, such as
r for radius from the z-axis, so great care needs to be taken to
check the meaning of the symbols.

According to the conventions of geographical coordinate
systems, positions are measured by latitude, longitude, and
height (altitude). There are a number of celestial coordinate
systems based on different fundamental planes and with
different terms for the various coordinates. The spherical
coordinate systems used in mathematics normally use radians
rather than degrees and measure the azimuthal angle
counterclockwise from the x-axis to the y-axis rather than
clockwise from north (0°) to east (+90°) like the horizontal
coordinate system.[2] The polar angle is often replaced by the
elevation angle measured from the reference plane, so that the
elevation angle of zero is at the horizon.

9/27/20, 3)48 PM{\displaystyle \eta \equiv -\ln \left[\tan \left({\frac {\theta }{2}}\right)\right],}
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• Perception (our understanding of the 
universe) is a dynamic combination of top-
down (theory) and bottom-up (data driven) 
processing.

I. Shipsey, 1707.03711
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Abraham Lincoln

Salvador Dali’s The Disintegration 
of the Persistence of Memory

Credit: Ian Shipsey

1707.03711



• Perception (our understanding of the universe) is a 
dynamic combination of top-down (theory) and 
bottom-up (data driven) processing. 

• From 1967 to 2012 particle physics was in a 
situation very similar to recognizing the image of 
Lincoln. Since 2012 we are in a situation where we 
are trying to recognize a Dali masterpiece, with 
little information to guide us. Without a roadmap 
we are dependent on bottom up information: we 
are in a data driven era. (Theoretical challenges) 

• Machine Learning and Quantum Computing are 
valuable tools for new physics searches.

I. Shipsey, 1707.03711



What is quantum computing?



Digital Computing vs Quantum Computing

Digital computation with  bits:  n
{0,1}n ⟶ {0,1}m, m ≤ n

Use binaries to perform 
calculations and solve problems

|ψ⟩ = cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩ =
cos θ

2

eiϕ sin θ
2

Qubit:Bit: x ∈ {0,1}

Unitary transformation 
Measurement 

Quantum computation with   qubits:   n

α1
α2
⋮

α2n

∈ ℂ2n

Use QM / qubits to solve problems
Introduction
What is Digital Computing?

3

AB

A B AB
0 0 1
0 1 1
1 0 1
1 1 0

+

Digital computation with  bits:  n {0,1}n → {0,1}m, m ≤ n

Classical gates:

Introduction
What is Digital Computing?

3

AB

A B AB
0 0 1
0 1 1
1 0 1
1 1 0

+

Digital computation with  bits:  n {0,1}n → {0,1}m, m ≤ n

NAND:

Quantum gates:

Pauli X: σx = (0 1
1 0)

Rotation around x-axis: R(θ) = exp (−iθ
σx

2 )

Algorithms Quantum Algorithms





Why Quantum Computing?
• Cryptography  

– Mathematics: factoring, hidden subgroup program, discrete 
logarithm problem  

• Optimization  
• Search algorithm 
• Quantum Machine Learning 

– Quantum Advantages?  
• Learns better with small # of data 
• Faster convergence 
• Less # of parameters 

• Quantum simulation 
• What are the interesting problems?



The First Wave of Quantum 
Machine Learning?The First Wave of Quantum Machine Learning

6

Long-term: Quantum Linear Algebra 

Exponential or polynomial speed-up in 

‣ Support vector machine 

‣ Principle component analysis 

‣ Bayesian methods 

‣ …

Ax = b Complexity of inversion of a regular matrix=  
Complexity of inversion of a sparse matrix=

O(N3)
O(N )







XXXXX1 XXXX1X XXX1XX

XX1XXX X1XXXX 1XXXXX



Is there a way to find out the answer 
by asking less than 6 questions?



Bernstein-Vazirani Algorithm
• A n-bit function , which outputs a single bit, is 

guaranteed to be of the form , where s is an unknown n-bit 

string and . Find the unknown 

string . 

• Best classical algorithm uses  calls to . Each 
query gives one bit of information of  (because  outputs one bit).

f : {0,1}⊗n ⟶ {0,1}
fs(x) = x ⋅ s

x ⋅ s = x0s0 + ⋯ + xn−1sn−1 =
n−1

∑
i=0

xisi (mod 2)

s = (s0s1⋯sn−1)

𝒪(n) fs(x) = x ⋅ s mod 2
s f

• How do we find  with less than  queries?  Use superposition (over all 
possible input bit strings)

s n →



Shor’s factoring algorithm
• To factor an integer  N, Shor's algorithm runs in polynomial time, 

meaning the time taken is polynomial in , the size of the 
integer given as input.  Specifically, it takes quantum gates of order 

. 

• This is significantly faster than the most efficient known classical 
factoring algorithm, the general number field sieve, which works in 

sub-exponential time: 

log N

O((log N )2(log log N )(log log log N ))

O(e1.9(log N)1/3(log log N)2/3)
RSA-250 = 
641352894770715802787901901705773
890848250147429434472081168596320
245323446302386235987526683477087
37661925585694639798853367 
        × 
333720275949781565562260106053551
142279407603447675546667845209870
238417292100370802574486732968818
77565718986258036932062711

RSA factoring challenge 
(Product of exactly two primes)

https://en.wikipedia.org/wiki/RSA_numbers#RSA-250
https://en.wikipedia.org/wiki/RSA_numbers#RSA-250


• We want to find out whether a particular function, with one input 
bit and one output bit is constant or balanced. Classically, we 
need to evaluate the function twice (i.e., for input = 0 and input 
= 1), but remarkably, we only need to evaluate the function 
once using quantum algorithm, by using Deutsch’s algorithm.

Deutsch Algorithm 1985

1

0

X

1

0

Y

1

0

X

1

0

Y

1

0

X

1

0

Y

1

0

X

1

0

Y• Consider a simple function,    
• For possible functions 

– Identity:                        and  

– Bit-flip function:            and  

– Constant function:         or   

f(x) : {0,1} ⟶ {0,1}

f(0) = 0 f(1) = 1
f(0) = 1 f(1) = 0
f(x) = 0 f(x) = 1



$ vs Tiger
• Teaching quantum information science to high-school 

and early undergraduate students by Sophia Economou, 
Terry Rudolph, Edwin Barnes, 2005.07874

• You encounter two doors:  
Money behind at least one 
door 

• Tiger might be lurking 
behind one door  

https://arxiv.org/pdf/2005.07874
https://arxiv.org/pdf/2005.07874




$ vs Tiger
• The button on the left opens both doors  
• YOU WANT TO BE SURE THERE’S NO TIGER 

BEHIND EITHER DOOR BEFORE YOU PUSH THE 
“OPEN” BUTTON  

• The device in the middle 
will tell you if there is a 
tiger behind the door that 
you ask about – but you 
only get to use it once  



• List the three different scenarios for what’s 
behind the doors:  

$ vs Tiger



• List the three different scenarios for what’s behind the doors:  

$ vs Tiger



• Make a truth table for the tiger box for each of the scenarios

$ vs Tiger



• Make a truth table for the tiger box for each of the scenarios

$ vs Tiger

1 = no tiger 
0 = tiger



• What gate(s) correspond to the truth table for each scenario?  

$ vs Tiger

1 = no tiger 
0 = tiger



• What gate(s) correspond to the truth table for each scenario?  

$ vs Tiger

1 = no tiger 
0 = tiger

Conditional NOT Identity
Both are possible.



• Challenge:  We can’t change the tiger box, but can we add gates 
before and/or after it such that we can determine if there is a tiger 
somewhere by ONLY USING THE TIGER BOX ONCE?  

• We’re trying to prove that quantum computing let’s us do things that 
are impossible with classical computing. Therefore, consider adding 
some quantum gates.  

• Hint 1: We’d like to query both doors with one push of a button, so 
maybe we should put the “Door” bit into a superposition.   

• Hint 2: We definitely don’t want a superposition output, so we maybe 
we should add a second H to the “Door” bit.   

• Hint 3: Our inputs will always be 11 for the solution.    
• Hint 4:  We want the output to be 11 for no tiger and 10 for tiger.  

$ vs Tiger



$ vs Tiger

• H changes 0 into + state. 
• H changes 1 into - state.



• What does this tell us? 
– We can solve (some) unsolvable problems with quantum 

computing 
– We can determine IF there is a tiger, but not WHICH 

DOOR  

$ vs Tiger



Variational Quantum Algorithms
• Hybrid quantum-classical model is suggested to circumvent the issue of 

going slow with quantum annealer as well as implementing Hamiltonian 
in the available hardware.  

• Quantum:  parameterize wave function 
• Classical:  minimize/maximize the expectation value of H in the problem.

E( ⃗θ) = ⟨ ψ( ⃗θ) | H |ψ( ⃗θ) ⟩



Variational Quantum Algorithms



Quantum Machine Learning
• Artificial Intelligence:   Statistical prediction  
• Machine Learning:  Learn from data 
• Quantum Machine Learning:  Learn from data with quantum algorithms 

– Subdiscipline of quantum computing and quantum information 
science 6 1 Introduction

Fig. 1.1 Four approaches to
combine quantum computing
and machine learning

data processing device

da
ta

ge
ne

ra
ti
ng

sy
st
em

QC QQ

CC CQ

C - classical, Q - quantum

and many others, and even slowly attracts the attention of selected machine learning
communities.

1.1.3 Four Intersections

As mentioned above, there are several definitions of the term quantum machine
learning, and we want to further specify its use in the context of this book. For this,
we slightly adapt a typology introduced by Aimeur, Brassard and Gambs [13]. It
distinguishes four approaches of how to combine quantum computing and machine
learning, depending on whether one assumes the data to be generated by a quantum
(Q) or classical (C) system, and if the information processing device is quantum (Q)
or classical (C) (see Fig. 1.1).

The CC flavour refers to classical data being processed classically. This is of
course the conventional approach to machine learning, but in this context it relates to
machine learning based on methods borrowed from quantum information research.
An example is the application of tensor networks, which have been developed for
quantum many-body systems, to neural network training [14, 15]. There are also
numerous “quantum-inspired” machine learning models. While for a long time,
this term described a body of literature with varying degrees of quantum mechan-
ical rigour, it is increasingly used to refer to so-called “dequantised” algorithms—
quantum algorithms for which a classical equivalent with similar speed guarantees
has been discovered [16, 17] (see also Sect. 7.1).

The QC intersection investigates how machine learning can help with quantum
computing. For example, one can use neural networks to describe quantum states
in a compact manner [18–20]. Another idea is to learn phase transitions in many-
body quantum systems, a fundamental physics problem with applications in the
development of quantum computers [21]. Machine learning has also been found

• CC:  classical data being processed 
classically  

• QC: how machine learning can help with 
quantum computing 

• CQ: classical data fed into quantum 
computer for analysis (quantum machine 
learning) 

• QQ: quantum data being processed by 
quantum computer (ex: Quantum 
simulation)



Quantum Optimization
• Optimization problems are everywhere.  

– Continuous optimization  
– Discrete optimization: combinatorial optimization 
– Quadratic Unconstrained Binary Optimization (QUBO) 

• NP hard problem 
• Quadratic function might have several local minima 
• Close connection to Ising model 

• Apply quantum algorithms to solve optimization problem 
– Gate model: use universal gates (Pauli’s) 
– Non-gate model (quantum annealer): relies on adiabatic 

theorem to find a minimum energy of Hamiltonian 
corresponding to the minimum value of some cost 
function.



MaxCut problem
• Objective:    

– Maximize the number of cut edges in a graph when split 
into 2 parts   

– Divides the set of nodes in the graph into two subsets so 
that we have as many edges as possible that go between 
the two sets  



Map Coloring
• Problem: Color the regions of a given map such that   

– at most four colors are used   
– no two adjacent* regions have the same color  



Traveling salesman problem (TSP)
• Given a list of cities and the distances between each pair 

of cities, what is the shortest possible route that visits 
each city exactly once and returns to the origin city? 

• It is an NP-hard problem in combinatorial optimization, 
important in theoretical computer science and operations 
research.

https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Operations_research


Quadratic Unconstrained Binary 
Optimization (QUBO)

• QUBO: combinatorial optimization problem with a wide range of 
applications from finance to ML (partitioning, graph coloring, task 
allocation, max-sat, max-cut etc) 

• Find a binary vector  which minimizes  

• In matrix notation,  where  
• NP-hard problem: no polynomial-time algorithms are known.

x* f

f(x) = xTQx, Q ∈ ℝn×n

f : ℤn
2 ⟶ ℝ

f(x) =
n

∑
i=1

i

∑
j=1

qij xi xj +
n

∑
i=1

hi xi
xi ∈ ℤ2 = {0,1}, hi, qij ∈ ℝ

Quadratic polynomial over binary variable 

x* = argmin
x ∈ ℤn

2

f(x)

x = (xnxn−1⋯x2x1)

(binary strings of n-bits)



Ising formulations of many NP problems
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Ising formulations ofmanyNPproblems

Andrew Lucas

Department of Physics, Harvard University, Cambridge, MA, USA 02138

We provide Ising formulations for many NP-complete and NP-hard problems, including

all of Karp’s 21 NP-complete problems. This collects and extends mappings to the Ising

model from partitioning, covering and satisfiability. In each case, the required number of

spins is at most cubic in the size of the problem. This work may be useful in designing

adiabatic quantum optimization algorithms.

lucas@fas.harvard.edu January 27, 2014
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1. Introduction

1.1. Quantum Adiabatic Optimization

Recently, there has been much interest in the possibility of using adiabatic quantum optimization (AQO)
to solve NP-complete and NP-hard problems [1, 2].1 This is due to the following trick: suppose we have a
quantum Hamiltonian HP whose ground state encodes the solution to a problem of interest, and another
Hamiltonian H0, whose ground state is “easy” (both to find and to prepare in an experimental setup).
Then, if we prepare a quantum system to be in the ground state of H0, and then adiabatically change
the Hamiltonian for a time T according to

H(t) =

(

1− t

T

)

H0 +
t

T
HP, (1)

then if T is large enough, and H0 and HP do not commute, the quantum system will remain in the ground
state for all times, by the adiabatic theorem of quantum mechanics. At time T , measuring the quantum
state will return a solution of our problem.

There has been debate about whether or not these algorithms would actually be useful: i.e., whether
an adiabatic quantum optimizer would run any faster than classical algorithms [3, 4, 5, 6, 7, 8, 9], due to
the fact that if the problem has size N , one typically finds

T = O
[

exp
(

αNβ
)]

, (2)

1In this paper, when a generic statement is true for both NP-complete and NP-hard problems, we will refer to these
problems as NP problems. Formally this can be misleading as P is contained in NP, but for ease of notation we will simply
write NP.

2

1302.5843

Andrew Lucas

H = − ∑
i, j

Jij σz
i σz

j − ∑
i

hi σz
i



QUBO example: Max-cut Problem
• Max-Cut is the NP-hard problem of finding a partition of 

the graph's vertices into an two distinct sets that 
maximizes the number of edges between the two sets. 

• Undirected Graph:  G = (V, E) 
– V: set of nodes, and  E: set of edges  

• Partition vertices into two complementary sets such that 
the number of edges between the two sets is as large as 
possible.

• As the Max-Cut Problem is NP-hard, 
no polynomial-time algorithms for 
Max-Cut in general graphs are 
known.



• The cost function to be maximized: 

• Introducing                  , the cost function can be rewritten 

C(x) = ∑
(i, j)∈E

(xi + xj − 2xixj) where xi ∈ {0,1}

C(s) =
1
2 ∑

(i, j)∈E
(1 − sisj) ⟶ C(s) =

1
2 ∑

(i, j)∈E
(1 − σz

i σz
j )

xi =
si + 1

2

xi + xj − 2xixj = 1, if xi and xj belong in different sets .

xi + xj − 2xixj = 0, if xi and xj belong in the same set .

(i, j) : the edge index
i : vertex index

σz = (1 0
0 −1) σz

i : Pauli′ s Z matrix actingon the ith vertex
σz

j : Pauli′ s Z matrix actingon the jth vertex
σz |0⟩ = + 1 |0⟩
σz |1⟩ = − 1 |1⟩

|0⟩ = (1
0) |1⟩ = (0

1)

QUBO example: Max-cut Problem

si ∈ Z2 = {−1,1}

Matrices = linear operators = observables

Eigenvalues = what are actually measured in experiments



Combinatorial problems at the LHC
2

PP � {vi} PP � {vi} � {vj} PP � A � B

(a) (b) (c)

FIG. 1. (a) n-observed particles (b) Dividing n particles into
two groups for 2 ! 2 process (c) Identified event-topology
with A and B.

QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
X

i

pi xi, P2 =
X

i

pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;

H =
�
P

2

1
� P

2

2

�2
(2)

for all possible combinations of {xi}. The dimension of
H, [H] = M

4 is chosen to address our problem as a
QUBO problem with an Ising model form;

HQUBO =
X

ij

Jijsisj +
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hisi, (3)

where {si} is spin set with only ±1 values for spin "

and #, and Jij , hi are the coupling strength and biases,
respectively. We cast our minimization problem on H

into that on HQUBO through a change of variables xi =

(1 + si)/2 to express;

Jij =
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PikPj`, (4)

hi = 2
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;

HQUBO ! HQUBO + �(P 2
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with J
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ij = Jij + 2�Pij and h

0
i = hi � 2�

P
j Pij . Here

we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;
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pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;
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we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
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! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy
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ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
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pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;
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we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
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! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
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pi xi, P2 =
X

i

pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;
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with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;
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we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data

for all possible combinations of xi

• Assuming  production 
with subsequent decays, 
identification of an event-
topology becomes a binary 
classification, with  
possibilities. 

• Combinatorial problem: What 
would be an efficient way of 
assigning all observed 
particles in two decay chains? 

2 → 2
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FIG. 1. Illustration of the QUBO problem considered in this paper as a fully connected graph. Each node represents a particle
originating from the decay process of a specific parent particle. Red nodes represent particles from particle A, while blue
nodes are from particle B. In our example of the tt̄ process, there would be six hard jets resulting from the decay of the two
top quarks. For example: (a) all particles originate from A, (b) {j2, j4, j5, j6} → A, {j1, j3} → B, and (c) {j3, j5, j6} → A,
{j1, j2, j4} → B. The value of the edge connecting nodes i and j is given by Jij + (1/2)ωPij . Edges connecting nodes from
the same parent particle contribute positively to HP and are shown as solid (blue) lines, while edges connecting nodes from
di!erent parent particles contribute negatively to HP and are represented by dashed (red) lines. The task of finding the correct
combinatorics is equivalent to identifying the graph configuration that minimizes HP .

the general ‘minimum energy principle’ in physics, one
might first consider minimizing the total invariant mass.
However, this approach leads to a trivial partonic total
energy for all visible particles and does not resolve the
combinatorial issue [12]. A more viable alternative is to
focus on the mass di!erence between A and B,

H0 =
(
P

2

1
→ P

2

2

)2
. (1)

Here the four momenta of two mother particles A and B

are defined as

P1 =
n∑

i=1

pi xi , (2)

P2 =
n∑

i=1

pi (1 → xi) , (3)

where xi ↑ {0, 1} is an indicator variable: xi = 1 if
particle i with momentum pi is from the particle A, oth-
erwise it is 0. Using the substitution xi = (1+si)/2 with
si = ±1, the problem Hamiltonian in Eq. (1) can be
written as

H0 =




∑

ij

Pijxixj →

∑

ij

Pij(1 → xi)(1 → xj)




2

=



1
4
∑

ij

Pij

[
(1 + si)(1 + sj) → (1 → si)(1 → sj)

]



2
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ij

Pijsi




2

=
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ij

Jijsisj , (4)

where Pij = pi · pj and Jij =
∑

kω
PikPjω.

The target cost function H0 in Eq. (1) is optimized for
mA = mB , which corresponds to the many conventional
new physics searches at the LHC. While H0 can serve

as a useful starting point, it must be generalized to ac-
commodate more complex scenarios, such as asymmetric
production and o!-shell e!ects. This can be achieved by
introducing an additional term [12]

H1 = (P 2

1
+ P

2

2
)

= 1
4
∑

ij

Pij

[
(1 + si)(1 + sj) + (1 → si)(1 → sj)

]

↓
1
2
∑

ij

Pijsisj , (5)

with the dropping of a constant term (1/2)(P1 + P2)2.
The full cost function or full (problem) Hamiltonian be-
comes

HP = H0 + ωH1 , (6)

where ω is a hyperparameter to be chosen during a op-
timization procedure. Ref. [12] suggests ω = min(Jij)

max(Pij)
to

ensure similar weights for the two terms. Unless other-
wise stated, we will use Eq. (6) in this study to estimate
the performance of various quantum algorithms.

Then the optimization procedure will return a specific
assignment of particles which minimizes the cost func-
tion or the problem Hamiltonian, therefore resolving the
combinatorial problem. We will apply this idea for the
fully hadronic channel of the top quark pair production,
as shown in Fig. 1. Here, each circle (node) represents
a particle, with particles of the same color belonging to
the same group. The lines connecting two nodes indi-
cate non-zero Jij + (1/2)ωPij coe"cients in the QUBO
model, illustrating a dense network. Here, the self-loop
is ignored as its contribution to HP remains constant.
The objective is to correctly identify two groups, each
containing three nodes—one group in red and the other
in blue.

3

(a) (b) (c)
j1

j2
j3

j4
j5

j6

j1

j2
j3

j4
j5

j6

j1

j2
j3

j4
j5

j6

FIG. 1. Illustration of the QUBO problem considered in this paper as a fully connected graph. Each node represents a particle
originating from the decay process of a specific parent particle. Red nodes represent particles from particle A, while blue
nodes are from particle B. In our example of the tt̄ process, there would be six hard jets resulting from the decay of the two
top quarks. For example: (a) all particles originate from A, (b) {j2, j4, j5, j6} → A, {j1, j3} → B, and (c) {j3, j5, j6} → A,
{j1, j2, j4} → B. The value of the edge connecting nodes i and j is given by Jij + (1/2)ωPij . Edges connecting nodes from
the same parent particle contribute positively to HP and are shown as solid (blue) lines, while edges connecting nodes from
di!erent parent particles contribute negatively to HP and are represented by dashed (red) lines. The task of finding the correct
combinatorics is equivalent to identifying the graph configuration that minimizes HP .
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might first consider minimizing the total invariant mass.
However, this approach leads to a trivial partonic total
energy for all visible particles and does not resolve the
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erwise it is 0. Using the substitution xi = (1+si)/2 with
si = ±1, the problem Hamiltonian in Eq. (1) can be
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∑

kω
PikPjω.

The target cost function H0 in Eq. (1) is optimized for
mA = mB , which corresponds to the many conventional
new physics searches at the LHC. While H0 can serve

as a useful starting point, it must be generalized to ac-
commodate more complex scenarios, such as asymmetric
production and o!-shell e!ects. This can be achieved by
introducing an additional term [12]

H1 = (P 2

1
+ P
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4
∑
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Pij

[
(1 + si)(1 + sj) + (1 → si)(1 → sj)

]

↓
1
2
∑

ij

Pijsisj , (5)

with the dropping of a constant term (1/2)(P1 + P2)2.
The full cost function or full (problem) Hamiltonian be-
comes

HP = H0 + ωH1 , (6)

where ω is a hyperparameter to be chosen during a op-
timization procedure. Ref. [12] suggests ω = min(Jij)

max(Pij)
to

ensure similar weights for the two terms. Unless other-
wise stated, we will use Eq. (6) in this study to estimate
the performance of various quantum algorithms.

Then the optimization procedure will return a specific
assignment of particles which minimizes the cost func-
tion or the problem Hamiltonian, therefore resolving the
combinatorial problem. We will apply this idea for the
fully hadronic channel of the top quark pair production,
as shown in Fig. 1. Here, each circle (node) represents
a particle, with particles of the same color belonging to
the same group. The lines connecting two nodes indi-
cate non-zero Jij + (1/2)ωPij coe"cients in the QUBO
model, illustrating a dense network. Here, the self-loop
is ignored as its contribution to HP remains constant.
The objective is to correctly identify two groups, each
containing three nodes—one group in red and the other
in blue.
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FIG. 1. (a) n-observed particles (b) Dividing n particles into
two groups for 2 ! 2 process (c) Identified event-topology
with A and B.

QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
X

i

pi xi, P2 =
X

i

pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;

H =
�
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2

1
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2

2
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for all possible combinations of {xi}. The dimension of
H, [H] = M

4 is chosen to address our problem as a
QUBO problem with an Ising model form;

HQUBO =
X

ij

Jijsisj +
X

i

hisi, (3)

where {si} is spin set with only ±1 values for spin "

and #, and Jij , hi are the coupling strength and biases,
respectively. We cast our minimization problem on H

into that on HQUBO through a change of variables xi =

(1 + si)/2 to express;

Jij =
X

k`

PikPj`, (4)

hi = 2
X

j

[
X

k`

(PikPj` � Pk`Pij)], (5)

with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;

HQUBO ! HQUBO + �(P 2

1
+ P

2

2
)

= HQUBO + �
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ij

Pij [sisj + (1� si)(1� sj)]
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J
0
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h
0
i si, (6)

with J
0
ij = Jij + 2�Pij and h

0
i = hi � 2�

P
j Pij . Here

we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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FIG. 1. Illustration of the QUBO problem considered in this paper as a fully connected graph. Each node represents a particle
originating from the decay process of a specific parent particle. Red nodes represent particles from particle A, while blue
nodes are from particle B. In our example of the tt̄ process, there would be six hard jets resulting from the decay of the two
top quarks. For example: (a) all particles originate from A, (b) {j2, j4, j5, j6} → A, {j1, j3} → B, and (c) {j3, j5, j6} → A,
{j1, j2, j4} → B. The value of the edge connecting nodes i and j is given by Jij + (1/2)ωPij . Edges connecting nodes from
the same parent particle contribute positively to HP and are shown as solid (blue) lines, while edges connecting nodes from
di!erent parent particles contribute negatively to HP and are represented by dashed (red) lines. The task of finding the correct
combinatorics is equivalent to identifying the graph configuration that minimizes HP .

the general ‘minimum energy principle’ in physics, one
might first consider minimizing the total invariant mass.
However, this approach leads to a trivial partonic total
energy for all visible particles and does not resolve the
combinatorial issue [12]. A more viable alternative is to
focus on the mass di!erence between A and B,
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Here the four momenta of two mother particles A and B

are defined as

P1 =
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i=1

pi xi , (2)

P2 =
n∑

i=1

pi (1 → xi) , (3)

where xi ↑ {0, 1} is an indicator variable: xi = 1 if
particle i with momentum pi is from the particle A, oth-
erwise it is 0. Using the substitution xi = (1+si)/2 with
si = ±1, the problem Hamiltonian in Eq. (1) can be
written as

H0 =
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Jijsisj , (4)

where Pij = pi · pj and Jij =
∑

kω
PikPjω.

The target cost function H0 in Eq. (1) is optimized for
mA = mB , which corresponds to the many conventional
new physics searches at the LHC. While H0 can serve

as a useful starting point, it must be generalized to ac-
commodate more complex scenarios, such as asymmetric
production and o!-shell e!ects. This can be achieved by
introducing an additional term [12]

H1 = (P 2

1
+ P

2

2
)

= 1
4
∑

ij

Pij

[
(1 + si)(1 + sj) + (1 → si)(1 → sj)

]

↓
1
2
∑

ij

Pijsisj , (5)

with the dropping of a constant term (1/2)(P1 + P2)2.
The full cost function or full (problem) Hamiltonian be-
comes

HP = H0 + ωH1 , (6)

where ω is a hyperparameter to be chosen during a op-
timization procedure. Ref. [12] suggests ω = min(Jij)

max(Pij)
to

ensure similar weights for the two terms. Unless other-
wise stated, we will use Eq. (6) in this study to estimate
the performance of various quantum algorithms.

Then the optimization procedure will return a specific
assignment of particles which minimizes the cost func-
tion or the problem Hamiltonian, therefore resolving the
combinatorial problem. We will apply this idea for the
fully hadronic channel of the top quark pair production,
as shown in Fig. 1. Here, each circle (node) represents
a particle, with particles of the same color belonging to
the same group. The lines connecting two nodes indi-
cate non-zero Jij + (1/2)ωPij coe"cients in the QUBO
model, illustrating a dense network. Here, the self-loop
is ignored as its contribution to HP remains constant.
The objective is to correctly identify two groups, each
containing three nodes—one group in red and the other
in blue.
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the general ‘minimum energy principle’ in physics, one
might first consider minimizing the total invariant mass.
However, this approach leads to a trivial partonic total
energy for all visible particles and does not resolve the
combinatorial issue [12]. A more viable alternative is to
focus on the mass di!erence between A and B,
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pi xi , (2)

P2 =
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pi (1 → xi) , (3)

where xi ↑ {0, 1} is an indicator variable: xi = 1 if
particle i with momentum pi is from the particle A, oth-
erwise it is 0. Using the substitution xi = (1+si)/2 with
si = ±1, the problem Hamiltonian in Eq. (1) can be
written as

H0 =




∑
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where Pij = pi · pj and Jij =
∑

kω
PikPjω.

The target cost function H0 in Eq. (1) is optimized for
mA = mB , which corresponds to the many conventional
new physics searches at the LHC. While H0 can serve

as a useful starting point, it must be generalized to ac-
commodate more complex scenarios, such as asymmetric
production and o!-shell e!ects. This can be achieved by
introducing an additional term [12]
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with the dropping of a constant term (1/2)(P1 + P2)2.
The full cost function or full (problem) Hamiltonian be-
comes

HP = H0 + ωH1 , (6)

where ω is a hyperparameter to be chosen during a op-
timization procedure. Ref. [12] suggests ω = min(Jij)

max(Pij)
to

ensure similar weights for the two terms. Unless other-
wise stated, we will use Eq. (6) in this study to estimate
the performance of various quantum algorithms.

Then the optimization procedure will return a specific
assignment of particles which minimizes the cost func-
tion or the problem Hamiltonian, therefore resolving the
combinatorial problem. We will apply this idea for the
fully hadronic channel of the top quark pair production,
as shown in Fig. 1. Here, each circle (node) represents
a particle, with particles of the same color belonging to
the same group. The lines connecting two nodes indi-
cate non-zero Jij + (1/2)ωPij coe"cients in the QUBO
model, illustrating a dense network. Here, the self-loop
is ignored as its contribution to HP remains constant.
The objective is to correctly identify two groups, each
containing three nodes—one group in red and the other
in blue.
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FIG. 1. (a) n-observed particles (b) Dividing n particles into
two groups for 2 ! 2 process (c) Identified event-topology
with A and B.

QUBO for Event-topology classification. Our only
assumption on abnormal events in collider data is that
observed particles are produced through 2 ! 2 process.
More specifically, two new particles A and B are pro-
duced and they decay into observed ones. Thus identi-
fying an event-topology becomes a binary classification,
whose computing complexity increases exponentially as
O(2n) with n observed particles. A schematic description
is presented in Fig. 1. As we have no further assump-
tions, we need to set a guiding rule to assign observed
particles into decay products of either A or B. Moti-
vated by general “energy minimum principle” in various
fields of physics, one attempts to minimize the total in-
variant mass (P1 + P2)2. But unlike the case of signals
with missing energy which have been studied extensively
in the literature, we will have a trivial partonic center of
energy

p
ŝ when all the final particles are visible without

missing energy-momenta.
The next trial we can take is to minimize a mass dif-

ference between A and B. With the four-momentum of
i-th particle as pi, momentums of A and B are;

P1 =
X

i

pi xi, P2 =
X

i

pi (1� xi), (1)

where pi is the constituent of A (P1) if xi = 1 or B (P2)
if xi = 0 [11]. Unlike a jet clustering algorithm, we don’t
require any structure or a seed in clustering particles. By
focusing on the kinematics, we minimize the following
function H, the mass di↵erence of A and B;

H =
�
P

2

1
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2

2

�2
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for all possible combinations of {xi}. The dimension of
H, [H] = M

4 is chosen to address our problem as a
QUBO problem with an Ising model form;

HQUBO =
X

ij

Jijsisj +
X

i

hisi, (3)

where {si} is spin set with only ±1 values for spin "

and #, and Jij , hi are the coupling strength and biases,
respectively. We cast our minimization problem on H

into that on HQUBO through a change of variables xi =

(1 + si)/2 to express;

Jij =
X

k`

PikPj`, (4)

hi = 2
X

j

[
X

k`

(PikPj` � Pk`Pij)], (5)

with Pij = pi · pj . Our target function H in Eq. (2) is
optimized to the case of MA = MB , which is the case
of most conventional new physics searches at the LHC.
Thus this functionH can be a starting point, but we need
to generalize this function to handle situations including
(1) various new physics scenarios with asymmetric pro-
duction of MA 6= MB , and (2) o↵-shell e↵ect from the
decay width of unstable particles or smearing from a de-
tector responses. We add an additional constraint term
to deal with above issues;

HQUBO ! HQUBO + �(P 2
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with J
0
ij = Jij + 2�Pij and h

0
i = hi � 2�

P
j Pij . Here

we remove constant terms. To maintain a hierarchy be-
tween the minimum for mass di↵erence and the minimum
in total mass sum during a minimization procedure, we
set � = min(Jij)/max(Pij). This choice is based on em-
pirical studies as in the case of choosing hyperparameters
in conventional ML algorithms. Finally, we swap A and
B if the number of particles assigned to A is less than
the number of particles clustered into B. We maintain
the ordering between numbers of constituent particles in
A and B over all events.

In order to demonstrate the performance of our QUBO
algorithm, we take three examples: (1) Top quark pair
production, (2) Higgs and Z boson production and (3)
four top-quark production via the pair of color octet õ

scalar where each scalar decays into a top-quark pair [19].
Here we take the mass of õ as 600GeV for a benchmark.
All these particles decay hadronically;

pp ! t, t̄ ! {j1, j2, j3, j4, j5, j6}, (7a)

pp ! H,Z ! {j1, j2, j3, j4, j5, j6}, (7b)

pp ! õ, õ
⇤
! t, t̄, t, t̄ ! {j1, j2, j3, · · · , j11, j12}. (7c)

Here ji is a reconstructed jet as we deal with fully
hadronic processes. To prepare data for above pro-
cesses at the LHC@13TeV, we use the standard chain of
Monte Carlo simulations, MadGraph5, Pythia8 and
Delphes3 with Fastjet [20–23]. As we focus on testing
the feasibility of our QUBO algorithm, we apply it to sig-
nal processes with MPI and ISR/FSR processes turned
o↵. Jets are reconstructed through anti-kT algorithm
with a jet radius R = 0.4. Basic cuts of pT > 25GeV
and rapidity |⌘| < 2.5 are applied to reconstructed jets.
HQUBO in Eq. (6) is calculated with Monte Carlo data
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FIG. 1. Illustration of the QUBO problem considered in this paper as a fully connected graph. Each node represents a particle
originating from the decay process of a specific parent particle. Red nodes represent particles from particle A, while blue
nodes are from particle B. In our example of the tt̄ process, there would be six hard jets resulting from the decay of the two
top quarks. For example: (a) all particles originate from A, (b) {j2, j4, j5, j6} → A, {j1, j3} → B, and (c) {j3, j5, j6} → A,
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combinatorics is equivalent to identifying the graph configuration that minimizes HP .

the general ‘minimum energy principle’ in physics, one
might first consider minimizing the total invariant mass.
However, this approach leads to a trivial partonic total
energy for all visible particles and does not resolve the
combinatorial issue [12]. A more viable alternative is to
focus on the mass di!erence between A and B,

H0 =
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. (1)

Here the four momenta of two mother particles A and B

are defined as

P1 =
n∑

i=1

pi xi , (2)

P2 =
n∑

i=1

pi (1 → xi) , (3)

where xi ↑ {0, 1} is an indicator variable: xi = 1 if
particle i with momentum pi is from the particle A, oth-
erwise it is 0. Using the substitution xi = (1+si)/2 with
si = ±1, the problem Hamiltonian in Eq. (1) can be
written as

H0 =




∑
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where Pij = pi · pj and Jij =
∑

kω
PikPjω.

The target cost function H0 in Eq. (1) is optimized for
mA = mB , which corresponds to the many conventional
new physics searches at the LHC. While H0 can serve

as a useful starting point, it must be generalized to ac-
commodate more complex scenarios, such as asymmetric
production and o!-shell e!ects. This can be achieved by
introducing an additional term [12]
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[
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]

↓
1
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Pijsisj , (5)

with the dropping of a constant term (1/2)(P1 + P2)2.
The full cost function or full (problem) Hamiltonian be-
comes

HP = H0 + ωH1 , (6)

where ω is a hyperparameter to be chosen during a op-
timization procedure. Ref. [12] suggests ω = min(Jij)

max(Pij)
to

ensure similar weights for the two terms. Unless other-
wise stated, we will use Eq. (6) in this study to estimate
the performance of various quantum algorithms.

Then the optimization procedure will return a specific
assignment of particles which minimizes the cost func-
tion or the problem Hamiltonian, therefore resolving the
combinatorial problem. We will apply this idea for the
fully hadronic channel of the top quark pair production,
as shown in Fig. 1. Here, each circle (node) represents
a particle, with particles of the same color belonging to
the same group. The lines connecting two nodes indi-
cate non-zero Jij + (1/2)ωPij coe"cients in the QUBO
model, illustrating a dense network. Here, the self-loop
is ignored as its contribution to HP remains constant.
The objective is to correctly identify two groups, each
containing three nodes—one group in red and the other
in blue.
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the general ‘minimum energy principle’ in physics, one
might first consider minimizing the total invariant mass.
However, this approach leads to a trivial partonic total
energy for all visible particles and does not resolve the
combinatorial issue [12]. A more viable alternative is to
focus on the mass di!erence between A and B,
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where xi ↑ {0, 1} is an indicator variable: xi = 1 if
particle i with momentum pi is from the particle A, oth-
erwise it is 0. Using the substitution xi = (1+si)/2 with
si = ±1, the problem Hamiltonian in Eq. (1) can be
written as
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Jijsisj , (4)

where Pij = pi · pj and Jij =
∑

kω
PikPjω.

The target cost function H0 in Eq. (1) is optimized for
mA = mB , which corresponds to the many conventional
new physics searches at the LHC. While H0 can serve

as a useful starting point, it must be generalized to ac-
commodate more complex scenarios, such as asymmetric
production and o!-shell e!ects. This can be achieved by
introducing an additional term [12]

H1 = (P 2

1
+ P

2

2
)

= 1
4
∑

ij

Pij

[
(1 + si)(1 + sj) + (1 → si)(1 → sj)

]

↓
1
2
∑

ij

Pijsisj , (5)

with the dropping of a constant term (1/2)(P1 + P2)2.
The full cost function or full (problem) Hamiltonian be-
comes

HP = H0 + ωH1 , (6)

where ω is a hyperparameter to be chosen during a op-
timization procedure. Ref. [12] suggests ω = min(Jij)

max(Pij)
to

ensure similar weights for the two terms. Unless other-
wise stated, we will use Eq. (6) in this study to estimate
the performance of various quantum algorithms.

Then the optimization procedure will return a specific
assignment of particles which minimizes the cost func-
tion or the problem Hamiltonian, therefore resolving the
combinatorial problem. We will apply this idea for the
fully hadronic channel of the top quark pair production,
as shown in Fig. 1. Here, each circle (node) represents
a particle, with particles of the same color belonging to
the same group. The lines connecting two nodes indi-
cate non-zero Jij + (1/2)ωPij coe"cients in the QUBO
model, illustrating a dense network. Here, the self-loop
is ignored as its contribution to HP remains constant.
The objective is to correctly identify two groups, each
containing three nodes—one group in red and the other
in blue.

λ =
min Jij

max Pij
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So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
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2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
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(Initial Hamiltonian)

And this state is simple to prepare: it is just |+i = H |0i. Thus we have everything we need to
evolve the state:

|�,�i =
pY

j=1

U(HM ,�j)U(HP , �j) |+i⌦n

where |�,�i ⌘ | i. This prepared state will be an approximation of the highest energy state of
HP . Thus if we can write a cost function as a Hamiltonian, then we can classically optimize the 2p
parameters (�,�) such that

Fp(�,�) = h�,�|HP |�,�i

is maximized.

Max Cut

In the max cut problem, we have a graph G = (V,E) with vertices V = {Vi} and edges E = {Ejk}.
We want to cut the graph wherein we split the graph into two subgraphs such that these two
subgraphs share a maximal number of edges. So our cost function will be

C =
1

2
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j,k2E
1� (�1)j(�1)k| {z }

Cjk

.

where vertices of one subgraph have a value of 1 and vertices of the other have a value of 0. Thus
if vertices j and k are not of the same subgraph, then j + k = 1 and so Cjk = 1 otherwse Cjk = 0.
So this cost function returns the number of cuts. Thus we want to maximize C. So to write this as
a Hamiltonian, note that the eigenvalues of the Pauli matrix �z are ±1 with eigenvectors |0i and
|1i. Thus, for a single edge,
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and thus we have our problem Hamiltonian and therefore our unitary:

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

where the first term (the 1) is the identity and so will not a↵ect the expectation value and the
�1/2 is absorbed into the constant �i.
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FIG. 4. Interference process of QAOA. QAOA is an interference-based algorithm such that non-target states interfere
destructively while the target states interfere constructively. Here we illustrate this interference process by presenting
the evolution of the quantum state of the parameters (black bar graphs on the yellow plane) alongside with the
QAOA operations (blue and pink boxes on circuit lines, representing the Phase encoding and Mixers respectively).
The starting state

q
◊

|◊Í (omitting the normalization factor) is the even superposition state of all possible parameter
configurations. After the first Phase encoding operation, the state becomes

q
◊

e≠i“1C(◊)|◊Í for which we use opacity
of the bars indicate the value of the phase, the magnitudes of the amplitudes in the state remains unchanged. After
the first Mixer, the state becomes

q
◊

�C(◊)|◊Í in which the magnitudes of the amplitudes in the state has changed.
Similar process happens to the following operations, until the amplitudes of the optimal parameter configurations
are amplified significantly (the furthest bar graph). The grey bar graph in the right corner is the cost function being
optimized by QAOA.

The alternating operations can be illustrated as in Fig. 5. Finally a measurement in the computational basis
is performed on the state. Repeating the above state preparation and measurement, the expected value of
the cost function,

ÈCÍ = È�,�| HC |�,�Í ,

can be estimated from the samples produced from the measurements.

The above steps are then repeated altogether, with updated sets of time parameters “1, . . . , “p, —1, . . . , —p.
Typically a classical optimization loop (such as gradient descent) is used to find the optimal parameters
that maximize(or minimize) the the expected value of the cost function ÈCÍ. Then measuring the resulting
state of the optimal parameters provide an approximate solution to the optimization problem.

There has been a lot of progress on QAOA recently on both the experimental and theoretical fronts. There
is evidence suggesting that QAOA may provide a significant quantum advantage over classical algorithms
[42, 43], and that it is computationally universal [44, 45]. Despite these advances, there are limitations
of QAOA. The performance improves with circuit depth, but circuit depth is still limited in near-term
quantum processors. Moreover, deeper circuits translate into more variational parameters, which introduces
challenges for the classical optimizer in minimizing the objective function. Ref. [46] show that the locality
and symmetry of QAOA can limit its performance. These issues can be attributed to the form of the QAOA
ansatz. A short-depth ansatz that is further tailored to a given combinatorial problem could therefore

QAOA

γ1

β1

γ2

β2

γp

βp

Maximum Likelihood detection 
Traveling salesman problem 

Scheduling management 
Unstructured search 

Graph coloring 
Max-cut

U(γ1) = exp (−iγ1HP)

U(β1) = exp (−iβ1HM)

U(γ2) = exp (−iγ2HP)
U(β2) = exp (−iβ2HM)

U(γp) = exp (−iγpHP)

U(βp) = exp (−iβpHM)
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FIG. 1: a) A specific instance of a graph for which we want to identify a set of vertices that maximises the number
of edges that are cut. b) A quantum circuit with a single iteration of a quantum ansatz applied to it. The quantum
ansatz consists of a unitary operation specific to the problem being solved and a problem-independent mixing
unitary. c) Decomposing the problem and mixing unitaries for QAOA, MA-QAOA, and XQAOA into CNOT and
single-qubit rotation gates.

formulated as a binary quadratic program of the form

Maximise
∑

{u,v}→E

1

2
wuv (1→ yuyv)

s.t yu ↑ {→1, 1} ↓u ↑ V.

(1)

The optimisation problem given by eq. (1) is NP-hard1,
which suggests that it is highly plausible that no e!cient
algorithm exists that can solve it.

However, there are approximation algorithms that can
find good solutions in polynomial time for many instances
of the problem. The GW algorithm holds the current
record for an approximation ratio guarantee on generic
graphs, achieving an approximation ratio of r↑ ↔ 0.87856

using semidefinite programming [63]. When confined to
unweighted 3-regular graphs, this lower bound can be in-
creased to r

↑ ↔ 0.9326 [72]2. Assuming the unique games
conjecture [74]3 and that P ↗= NP, this is the best possible
approximation ratio for MaxCut [75–77] that polynomial-
time classical algorithms can achieve. Additionally, it has

1 Historically, the NP-hardness of MaxCut was one of the earli-
est results known in computational complexity theory: the de-
cision version of the MaxCut problem was one of Karp’s first
NP-complete problems [71]. Here, a decision problem is a prob-
lem in which a yes-or-no answer is sought. A decision version of
the MaxCut problem may be phrased as follows: given a graph
G and an integer j, determine if G has a cut whose size is at
least j.

2 This bound by Halperin et al. is an improvement over an earlier
result by Feige et al., who found a smaller lower bound of r→ →
0.924 for unweighted 3-regular graphs [73].

3 The unique games conjecture asserts that the problem of esti-
mating the approximate value of a certain type of game, known
as a unique game, has an NP-Hard computational complexity.

been proven that it is NP-hard to approximate the Max-
Cut value with an approximation ratio that is better than
r
↑ ↘ 16/17 ↔ 0.94117 [78, 79].

B. Quantum Approximate Optimisation Algorithm

(QAOA)

Combinatorial optimisation problems can be formu-
lated using n bits and m clauses, where each clause repre-
sents a constraint on a subset of the bits that is satisfied
for certain combinations of values for those bits but not
for others. We consider the case when each clause µ is
associated with a cost cµ ↑ R. The objective function
defined on n-bit strings is then given by the sum of the
costs of the satisfied clauses:

C(z) =

m∑

µ=1

Cµ(z), (2)

where z = z1z2 · · · zn ↑ {0, 1}n is an n-bit string and
Cµ(z) = cµ if z satisfies the clause µ and 0 otherwise.
An approximate optimisation algorithm aims to find a
string z that achieves a desired approximation ratio r

ω,
i.e., it seeks a string z that satisfies

C(z)

Cmax
↘ r

↑
, (3)

where Cmax = maxz C(z). The QAOA algorithm con-
sists of two operators (see fig. 1): the problem unitary
and the mixing unitary, which are generated by the prob-
lem Hamiltonian and mixing Hamiltonian, respectively.
The problem unitary is defined as the following unitary
operator U(C, ω) which depends on a real-valued angle

Multi-angle Quantum Approximate Optimization Algorithm: 2109.11455

• QAOA:    one parameter for each mixer layer 

• ma-QAOA:      parameters for each mixer layer 

• XQAOA:          parameters for each mixer layer

nq

2nq
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Figure 1. (a) The procedure for implementing FALQON. The initial step is to seed the procedure by setting �1 = 0. The
qubits are then initialized in the state | 0i, and a single FALQON layer is implemented to prepare | 1i = Ud(�1)Up| 0i. The
qubits are then measured to estimate A1, whose result is fed back to set �2 = �A1, up to sampling error. For subsequent steps
k = 2, · · · , `, the same procedure is repeated, as shown in (b): the qubits are initialized as | 0i, after which k layers are applied
to obtain | ki = Ud(�k)Up · · ·Ud(�1)Up| 0i, and then the qubits are measured to estimate Ak, and the result is fed back to set
the value of �k+1. This procedure causes hHpi to decrease layer-by-layer as per h 1|Hp| 1i � h 2|Hp| 2i � · · · � h `|Hp| `i,
as shown in (c), such that the quality of the solution to the combinatorial optimization problem monotonically improves with
circuit depth. The protocol can be terminated when the value of hHpi converges or a threshold number of layers ` is reached.
Then, after the final step, Z basis measurements on | `i can be used to determine a best candidate solution to the combinatorial
optimization problem of interest, by repeatedly sampling from the probability distribution over bit strings induced by | `i and
selecting the outcome associated with the best solution.
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Hp and Hd. We note that for small �t, this yields a
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change, the eigenstates of Hp do accumulate phases dur-
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Eq. (1) will be violated. Based on this framework, the
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of Eq. (1) ensures that the quality of the solution to
the combinatorial optimization problem under consider-
ation (quantified by hHpi) improves monotonically with
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FALQON is conceptually distinct from QAOA. Namely,
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over all parameters ~�, ~� simultaneously, while FALQON
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Parton-level truth and hemisphere method
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FIG. 3. The reconstructed masses (left) and jet-assignment (right) for parton-level events using the true ground state of the
full Hamiltonian. The overall e!ciency of resolving the combinatorial problem is about 79%.

FIG. 4. The same as Fig. 3 but for the hemisphere method. The overall e!ciency (matching accuracy) is about 36%.

rate.

IV. BRIEF REVIEW ON ALGORITHMS USED
IN THIS PAPER

Variational quantum algorithms (VQAs) are a hybrid
quantum-classical approach in which the parameters are
adjusted using classical optimization techniques. For pa-
rameters ω, the circuit produces the state |ω→ with the
goal of minimizing ↑ω|C|ω→ where C is the cost function.
As an example, if C is a Hamiltonian, then we are param-
eterizing the circuit to find the minimum energy eigen-
state of the Hamiltonian. In this section, we briefly in-
troduce two two classes of quantum-classical algorithms:
variational quantum algorithms based on QAOA [8] and
the feedback-based algorithm FALQON [11]. All of our
quantum algorithms are simulated with PennyLane [63]

and all code is available on GitHub2. We use Adam op-
timizer [64] to optimize the parameters of variational al-
gorithms. We used 12k events for the results presented
in sections IV and V and Appendices, unless otherwise
stated.

A. Quantum Approximation Optimization
Algorithm (QAOA)

The Quantum Approximation Optimization Algorithm
(QAOA) [8] is one of the most widely known VQAs. We

2 https://github.com/crumpstrr33/collider_combinatorics_
with_QAs
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FIG. 5. The reconstructed masses (left) and jet-assignment (right) for parton-level events using QAOA with depth p = 8. The
ground state is found for the full Hamiltonian. The overall e!ciency (matching accuracy) is 55%.

consider the Hamiltonian of the form

H(t) = (1 → a(t))HM + a(t)HP (7)

where a(0) = 0 and a(T ) = 1 for the final time T . There-
fore, the full Hamiltonian transitions from being HM ini-
tially to HP where HM is called the mixer Hamiltonian
and HP is the problem Hamiltonian. The former is a
system that is easily solvable and preparable. We use

HM =
n∑

i=1

ω
X

i
, (8)

where ωX
i

= Xi is the Pauli X gate operating on the i-th
qubit. The latter is a system with an energy eigenstate,
specifically the ground state, which represents the solu-
tion to the given problem. Therefore, minimizing the cost
function corresponds to finding the lowest eigenvalue.

We assume that the system begins with the Hamilto-
nian HM and evolves into the Hamiltonian HP slowly
enough such that the adiabatic theorem is applicable.
The time-evolution operator can be broken up into steps:

U(T, 0) = U(T, T → !t)U(T → !t, T → 2!t) · · ·U(!t, 0)

=
p∏

j=1

U(j!t, (j → 1)!t) (9)

where !t = T/p. If we consider !t to be small, i.e.
p is large, then we can approximate the time-evolution
operator as follows with constant H over the short time
interval !t:

U(T, 0) ↑

p∏

j=1

e
→i!tH(j!t) (10)

=
p∏

j=1

exp
[

→ i!t
[
(1 → a(j!t))HM + a(j!t)HP

]]
.

Using the approximation e
ω(A+B) = e

ωA
e
ωB + O(ε2) for

non-commuting operators A and B, The time-evolution
operator can be rewritten as

U(T, 0) ↑

p∏

j=1

exp
[

→ i!t(1 → a(j!t))HM

]

↓ exp
[

→ i!ta(j!t)HP

]
. (11)

Note that for !t ↔ 0 we get back U(T, 0) exactly. In-
troducing ϑj ↗ !t(1 → a(j!t) and ϖj ↗ !ta(j!), we
obtain

U(T, 0) =
p∏

j=1

exp
[

→ iϑjHM

]
exp

[
→ iϖjHP

]
. (12)

Defining the unitary operator U(ϱ,H) ↗ exp [→iϱH], the
time-evolution operator can be written as

U(T, 0) =
p∏

j=1

U(ϑj , HM )U(ϖj , HP ) (13)

which is exact in the limit p ↔ ↘. Then the quantum
state initialized in the eigenstate of HM , |+≃

↑n, evolves
into the following final state

|ω,ε≃ =
p∑

j=1

U(ϑj , HM )U(ϖj , HP ) |+≃
↑n

, (14)

where ω = (ϑ1, · · · ,ϑp) and ε = (ϖ1, · · · , ϖp). Minimiz-
ing the expectation value of HP

⇐HP ≃ = ⇐ω,ε|HP |ω,ε≃ , (15)

is then the work of a classical optimizer. Having re-
turned updated values for ω and ε, the circuit is reran
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FIG. 6. The same as Fig. 5 but for ma-QAOA with p = 8. The overall e!ciency (matching accuracy) is 75%.

FIG. 7. The same as Fig. 5 but for FALQON with p = 250. The overall e!ciency (matching accuracy) is 72%.

where ω is a small time delay. Following a similar deriva-
tion as above and discretizing time into time steps !t,
we obtain the recursive relationship εk+1 = →Ak where
Ak = ↑ϑk|i[HM , HP ]|ϑk↓ and |ϑk↓ is the quantum state
of the circuit after the k-th layer:

|ϑk↓ = UM (εk)UP |ϑk→1↓ , (24)

where

UM (εk) = e
→iωk!tHM , and UP = e

→i!tHP . (25)

Unlike the alternative versions (ma-QAOA or XQAOA)
of QAOA which try to leverage the classical optimizer
more, FALQON removes the optimizer entirely instead
relying on expectation values of the operator i[HM , HP ]
to build the circuit. Once the initial value of ε(t), ε(0) =
ε1, is chosen, the only parameters are !t and the total
number of layers p. (See Fig. 15 for a circuit diagram.)

Fig. 7 summarizes our results on the reconstructed
masses and the jet assignment, which are comparable
to those using ma-QAOA, outperforming conventional
QAOA. We obtained the results with !t = 0.08 and
initial parameter ε1 = 0 for p = 250. We observe
that our results are intensive to the initial value. A
smaller !t converges slower, while a larger !t did not
converge. Feedback-based quantum optimization algo-
rithms are advancing rapidly; for recent developments
and additional references, see [75–78].

V. COMPARISON OF DIFFERENT
ALGORITHMS

We have briefly reviewed VQAs (QAOA and its vari-
ants, ma-QAOA and XQAOA) as well as a feedback
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Fig. 7 summarizes our results on the reconstructed
masses and the jet assignment, which are comparable
to those using ma-QAOA, outperforming conventional
QAOA. We obtained the results with !t = 0.08 and
initial parameter ε1 = 0 for p = 250. We observe
that our results are intensive to the initial value. A
smaller !t converges slower, while a larger !t did not
converge. Feedback-based quantum optimization algo-
rithms are advancing rapidly; for recent developments
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FIG. 8. The matching accuracy or e!ciency of QAOA (solid, yellow), ma-QAOA (dashed, orange), FALQON (dotted, red)
and hemisphere (purple, dot-dashed) for parton-level events for using H0 only in Eq. (1) (left) and using H = H0 + ωH1 in
Eq. (1) and Eq. (5).

based algorithm (FALQON). In this section, we present
all results as a function of the boostness of the mother
particles (two top quarks) [12], since boosted particles
lead to the collimated daughter particles, which are eas-
ier to resolve.

In Fig. 8, we show the matching accuracy of QAOA
(solid, yellow), ma-QAOA (dashed, orange), FALQON
(dotted, red) and hemisphere (black, dot-dashed) for
parton-level events for using Eq. (1) only (left) and using
full Hamiltonian (Eq. (1) and Eq. (5)), H = H0 + ωH1.
The matching accuracy represents the e!ciency of each
method, indicating the fraction of events that are suc-
cessfully resolved by each approach.

The boostness is illustrated by mtt̄/(2mt), where mtt̄

is the invariant mass of the two top quarks and mt is the
top quark mass. The shaded region represents matching
accuracy for a theoretical algorithm that chose the mini-
mum eigenstate for every event, indicating the e"ective-
ness of the Hamiltonian. Any quantum algorithms that
we consider can not lead to results that is better than the
shaded region. The region around mtt̄/(2mt) → 1 repre-
sents the threshold production, where the decay prod-
ucts of the top quarks are approximately isotropically
distributed. In this case, the combinatorial problem is
harder to resolve and the matching accuracy is low for
all methods. Especially, the hemisphere method is sig-
nificantly a"ected by the boostness, while quantum al-
gorithms with the leading Hamiltonian (the mass square
di"erence in Eq. (1) is less sensitive, as shown in the left
panel.

However, when the two top quarks are very boosted
(mtt/(2mt) ↑ 2.5), the hemisphere method outperforms
all other methods. Although overall accuracy is still
much higher with quantum algorithms. To further im-

prove the performance of quantum algorithms, we have
considered the second term (Eq. (5)) in the Hamilto-
nian. Indeed, the revised Hamiltonian H = H0 + ωH1

leads to the substantial enhancement in the region with
mtt̄/(2mt) ↑ 1.5. While the performance near the
threshold is quite suppressed, the total e!ciency of the
revised Hamiltonian is much better than the case with-
out it. The performance near the threshold is still better
than that for the hemisphere method. We note that since
the hemisphere method is independent of the cost func-
tion or Hamiltonian, the two curves in the left and right
are identical.

One important question is how to choose the depth
of quantum circuits. Fig. 9 shows the success rates
of QAOA (blue), ma-QAOA (red) and XQAOA (pur-
ple) as a function of the number of iterations (depth)
for parton-level events using the full Hamiltonian in Eq.
(6). The solid curves labeled as “Minimum” represent
the success rate of the algorithm in finding the correct
ground state, while the dotted curves labeled as “Cor-
rect” show the matching accuracy (e!ciency) in resolving
the combinatorial problem. As expected, ma-QAOA and
XQAOA converge to →80% matching accuracy rather
quickly around p = O(2), while the QAOA results fluc-
tuate significantly and therefore require many more iter-
ations.

Finally we compare quantum algorithms against ma-
chine learning (ML) methods. We chose to use SPANet
[4, 5], which is a symmetry-preserving attention network
reflecting the problem’s natural invariance to e!ciently
find assignments without evaluating all permutations.
Refs. [4, 5] showed that this general approach is ap-
plicable to arbitrarily complex configurations and signif-
icantly outperforms current methods. Fig. 10 shows the

mtt̄

2mt
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FIG. 9. The success rate of QAOA (blue), ma-QAOA (red),
and XQAOA (purple) as a function of the number of iterations
(depth, p) for parton-level events using the full Hamiltonian
is shown. The solid curves represent how well the Hamilto-
nian finds the ground state correctly, while the dotted curves
represent how well the quantum algorithm resolves the com-
binatorial problem.

FIG. 10. E!ciency plot for parton-level events using SPANet
[4, 5] for several di"erent number of training events and num-
ber of the network parameters. The corresponding overall
e!ciencies are 90.7% (blue, solid), 87.4% (red, dotted) and
80.7% (green, dashed), respectively.

e!ciency for parton-level events using SPANet for several
di"erent number of training events (ntrain) and number of
learnable parameters (nparams), blue for (ntrain, nparams)
= (1 mil, 518k), red for (ntrain, nparams) = (100k, 68.3k)
and green for (ntrain, nparams) = (20k, 19k). The cor-
responding overall e!ciencies are 90.7% (blue, solid),
87.4% (red, dotted) and 80.7% (green, dashed), respec-
tively. These results are obtained with the default set-
tings in SPANet with AdamW optimizer [79].

There are several notable di"erences between quan-

tum algorithms and ML methods. First, quantum algo-
rithms are independent of the particle masses, while the
top mass information is indirectly learned in ML meth-
ods. If the top mass changes, ML needs new training.
Second, quantum algorithms do not require the training
step at all and the Hamiltonian is computed on an event-
by-event basis, while ML methods learn properties of all
training samples. However, QAOA and its variants re-
quire an optimization process, while FALQON does not.
Third, SPANet is a supervised learning algorithm, which
assumes the event-topology (2-step 2-body in this study).
On the other hand, the quantum algorithms advertised
in this paper do not require any training nor event topol-
ogy. Finally, SPANet is the state of art ML method for
resolving the combinatorial problem in the multi-jet final
state [4, 5], and quantum algorithms that we have inves-
tigated already give comparable results. Considering the
current era is only the beginning of quantum algorithms,
we anticipate substantial improvement with new quan-
tum algorithms in near future.

We summarize some of the important parameters in
Table I for the various methods we investigated in resolv-
ing the combinatorial ambiguities in the fully hadronic
production of top pairs. The corresponding accuracies
or e!ciencies for both parton-level and smeared events
are also presented. (see Appendix C for description of
smeared events.) The QAOA, ma-QAOA and FALQON
all have the same number of gates. For q qubits, each
layer contains

(
q

2

)
RZZ gates and q RX gates, and each

RZZ gate includes 2 CNOT gates and 1 RZ gate, which
leads to 2

(
q

2

)
CNOT+

(
q

2

)
RZ+q RX gates for each layer.

Therefore there are 2p
(
q

2

)
CNOT gates (nCNOT), p

(
q

2

)
RZ

gates (nRZ) and pq RX gates (nRX). For p = 8, the circuit
contains 240 CNOT gates, 120 RZ gates and 48 RX gates.
FALQON with depth p = 250 uses 7500 CNOT gates,
3750 RZ gates and 1500 RX . The numbers of parameters
(nparameters) is 2p = 16 for for QAOA and p(q+

(
q

2

)
) = 168

for ma-QAOA. FALQON uses only two free parameters
!t and ω1. ML methods such as SPANet needs the train-
ing procedure, which requires the su!cient number of
training samples (ntrain) and a large number of param-
eters (nparameters). We note that nparameters represents
two distinct concepts: the count of learnable parameters
for SPANet and the number of adjustable parameters for
quantum algorithms, respectively.

When discussing the performance of a quantum algo-
rithm, the number of CNOT gates is often counted be-
cause CNOT gates are a key building block for creating
entanglement between qubits, which is a crucial aspect
of many quantum algorithms, and therefore, the number
of CNOT gates directly impacts the complexity and ex-
ecution time of the algorithm on a quantum computer
[80, 81].
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FIG. 8. The matching accuracy or e!ciency of QAOA (solid, yellow), ma-QAOA (dashed, orange), FALQON (dotted, red)
and hemisphere (purple, dot-dashed) for parton-level events for using H0 only in Eq. (1) (left) and using H = H0 + ωH1 in
Eq. (1) and Eq. (5).

based algorithm (FALQON). In this section, we present
all results as a function of the boostness of the mother
particles (two top quarks) [12], since boosted particles
lead to the collimated daughter particles, which are eas-
ier to resolve.

In Fig. 8, we show the matching accuracy of QAOA
(solid, yellow), ma-QAOA (dashed, orange), FALQON
(dotted, red) and hemisphere (black, dot-dashed) for
parton-level events for using Eq. (1) only (left) and using
full Hamiltonian (Eq. (1) and Eq. (5)), H = H0 + ωH1.
The matching accuracy represents the e!ciency of each
method, indicating the fraction of events that are suc-
cessfully resolved by each approach.

The boostness is illustrated by mtt̄/(2mt), where mtt̄

is the invariant mass of the two top quarks and mt is the
top quark mass. The shaded region represents matching
accuracy for a theoretical algorithm that chose the mini-
mum eigenstate for every event, indicating the e"ective-
ness of the Hamiltonian. Any quantum algorithms that
we consider can not lead to results that is better than the
shaded region. The region around mtt̄/(2mt) → 1 repre-
sents the threshold production, where the decay prod-
ucts of the top quarks are approximately isotropically
distributed. In this case, the combinatorial problem is
harder to resolve and the matching accuracy is low for
all methods. Especially, the hemisphere method is sig-
nificantly a"ected by the boostness, while quantum al-
gorithms with the leading Hamiltonian (the mass square
di"erence in Eq. (1) is less sensitive, as shown in the left
panel.

However, when the two top quarks are very boosted
(mtt/(2mt) ↑ 2.5), the hemisphere method outperforms
all other methods. Although overall accuracy is still
much higher with quantum algorithms. To further im-

prove the performance of quantum algorithms, we have
considered the second term (Eq. (5)) in the Hamilto-
nian. Indeed, the revised Hamiltonian H = H0 + ωH1

leads to the substantial enhancement in the region with
mtt̄/(2mt) ↑ 1.5. While the performance near the
threshold is quite suppressed, the total e!ciency of the
revised Hamiltonian is much better than the case with-
out it. The performance near the threshold is still better
than that for the hemisphere method. We note that since
the hemisphere method is independent of the cost func-
tion or Hamiltonian, the two curves in the left and right
are identical.

One important question is how to choose the depth
of quantum circuits. Fig. 9 shows the success rates
of QAOA (blue), ma-QAOA (red) and XQAOA (pur-
ple) as a function of the number of iterations (depth)
for parton-level events using the full Hamiltonian in Eq.
(6). The solid curves labeled as “Minimum” represent
the success rate of the algorithm in finding the correct
ground state, while the dotted curves labeled as “Cor-
rect” show the matching accuracy (e!ciency) in resolving
the combinatorial problem. As expected, ma-QAOA and
XQAOA converge to →80% matching accuracy rather
quickly around p = O(2), while the QAOA results fluc-
tuate significantly and therefore require many more iter-
ations.

Finally we compare quantum algorithms against ma-
chine learning (ML) methods. We chose to use SPANet
[4, 5], which is a symmetry-preserving attention network
reflecting the problem’s natural invariance to e!ciently
find assignments without evaluating all permutations.
Refs. [4, 5] showed that this general approach is ap-
plicable to arbitrarily complex configurations and signif-
icantly outperforms current methods. Fig. 10 shows the

Methods
matching accuracy (e!ciency)

ntrain nparameters depth (p) nCNOT nRZ nRX

parton-level smeared events

Hemisphere 50% 48% N/A

QAOA 55% 53%

N/A

16
8 240 120 48

ma-QAOA 75% 73% 168

FALQON 72% 69% 2 250 7,500 3,750 1,500

VarQITE 79% ??% 15 1 30 15 30

SPANet
91% 70% 5→ 105 106

N/A

81% 62% 2→ 104 1.9→ 103

Table 1: Summary of the performance of various methods and the corresponding parameters.



Variational Quantum Imaginary Time 
Evolution (VarQITE)

• State time evolution under a Hamiltonian: 

1901.07653, Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution

1812.08767, Theory of variational quantum simulation
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FIG. 8. The same as Fig. 5 but for VarQITE. The overall e!ciency (matching accuracy) is 79%.

lution of each Pω, where HP =
∑

ω
Pω, by

ω →Pω↑

ωε
=
∑

j

2 Re
[
→ϑ(ω)|Pω

ω

ωϖj
|ϑ(ω)↑

]
ϖ̇j

= ↓ →ϑ(ω)|{Pω, HP ↓ Eε}|ϑ(ω)↑ , (29)

with ϖ̇j = ωϖj/ωε . Applying this condition to all Pω
terms in the Hamiltonian Hc yields the linear system

G · ω̇ = D, (30)

where

Gω,j = Re
[
→!(ω)|Pω

ω

ωϖj
|!(ω)↑

]
, (31)

Dω = ↓
1
2 →!(ω)|{Pω, HP ↓ Eε}|!(ω)↑ . (32)

Using the parameter-shift rule [84, 85], each column
of G can be determined from just two circuit evalua-
tions. Moreover, if the Hamiltonian HP consists solely of
Pauli-Z operators (as those in QUBO formulations), all
Pω terms commute, allowing the calculation of D from a
single circuit evaluation. Thus, at each time step, the pa-
rameters ω can be updated using a forward Euler method,
ω ↔ ω+”ε ω̇, where ω̇ is obtained by inverting Eq. (30).
This procedure requires only 2Np + 1 circuit evaluations
per time step, o!ering a substantial improvement in e"-
ciency compared to previous VarQITE approaches.

Fig. 8 summarizes our results on the reconstructed
masses and the jet assignment, which are compara-
ble to those using ma-QAOA, outperforming conven-
tional FALQON or QAOA. Please describe parame-
ters/initialization used to run VarQITE, if any.

V. COMPARISON OF DIFFERENT
ALGORITHMS

We have briefly reviewed VQAs (QAOA and its vari-
ants, ma-QAOA and XQAOA) as well as a feedback
based algorithm (FALQON). In this section, we present
all results as a function of the boostness of the mother
particles (two top quarks) [16], since boosted particles
lead to the collimated daughter particles, which are eas-
ier to resolve.

In Fig. 9, we show the matching accuracy of QAOA
(solid, yellow), ma-QAOA (dashed, orange), FALQON
(dotted, red) and the hemisphere method (black, dot-
dashed) for parton-level events using H0, Eq. (1), on
the left and using full Hamiltonian H2, Eq. (1) and Eq.
(5), on the right. As stated at the end of the introduc-
tion, the matching accuracy represents the e"ciency of
each method, indicating the fraction of events that are
successfully resolved by each approach.

The boostness is illustrated by mtt̄/(2mt), where mtt̄

is the invariant mass of the two top quarks and mt is
the top quark mass. The shaded region represents the
matching accuracy for a theoretical algorithm that chose
the minimum eigenstate for every event, indicating the
e!ectiveness of the Hamiltonian. Any quantum algo-
rithms that we consider can not lead to results that are
better than the minimum of the shaded region. The
region around mtt̄/(2mt) ↗ 1 represents the threshold
production, where the decay products of the top quarks
are approximately isotropically distributed. In this case,
the combinatorial problem is harder to resolve and the
matching accuracy is low for all methods. In particular,
the hemisphere method is significantly a!ected by the

Parton-level truth and hemisphere method
5

FIG. 3. The reconstructed masses (left) and jet-assignment (right) for parton-level events using the true ground state of the
full Hamiltonian. The overall e!ciency of resolving the combinatorial problem is about 79%.

FIG. 4. The same as Fig. 3 but for the hemisphere method. The overall e!ciency (matching accuracy) is about 36%.

rate.

IV. BRIEF REVIEW ON ALGORITHMS USED
IN THIS PAPER

Variational quantum algorithms (VQAs) are a hybrid
quantum-classical approach in which the parameters are
adjusted using classical optimization techniques. For pa-
rameters ω, the circuit produces the state |ω→ with the
goal of minimizing ↑ω|C|ω→ where C is the cost function.
As an example, if C is a Hamiltonian, then we are param-
eterizing the circuit to find the minimum energy eigen-
state of the Hamiltonian. In this section, we briefly in-
troduce two two classes of quantum-classical algorithms:
variational quantum algorithms based on QAOA [8] and
the feedback-based algorithm FALQON [11]. All of our
quantum algorithms are simulated with PennyLane [63]

and all code is available on GitHub2. We use Adam op-
timizer [64] to optimize the parameters of variational al-
gorithms. We used 12k events for the results presented
in sections IV and V and Appendices, unless otherwise
stated.

A. Quantum Approximation Optimization
Algorithm (QAOA)

The Quantum Approximation Optimization Algorithm
(QAOA) [8] is one of the most widely known VQAs. We

2 https://github.com/crumpstrr33/collider_combinatorics_
with_QAs
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FIG. 8. The same as Fig. 5 but for VarQITE. The overall e!ciency (matching accuracy) is 79%.

lution of each Pω, where HP =
∑

ω
Pω, by

ω →Pω↑

ωε
=
∑

j

2 Re
[
→ϑ(ω)|Pω

ω

ωϖj
|ϑ(ω)↑

]
ϖ̇j

= ↓ →ϑ(ω)|{Pω, HP ↓ Eε}|ϑ(ω)↑ , (29)

with ϖ̇j = ωϖj/ωε . Applying this condition to all Pω
terms in the Hamiltonian Hc yields the linear system

G · ω̇ = D, (30)

where

Gω,j = Re
[
→!(ω)|Pω

ω

ωϖj
|!(ω)↑

]
, (31)

Dω = ↓
1
2 →!(ω)|{Pω, HP ↓ Eε}|!(ω)↑ . (32)

Using the parameter-shift rule [84, 85], each column
of G can be determined from just two circuit evalua-
tions. Moreover, if the Hamiltonian HP consists solely of
Pauli-Z operators (as those in QUBO formulations), all
Pω terms commute, allowing the calculation of D from a
single circuit evaluation. Thus, at each time step, the pa-
rameters ω can be updated using a forward Euler method,
ω ↔ ω+”ε ω̇, where ω̇ is obtained by inverting Eq. (30).
This procedure requires only 2Np + 1 circuit evaluations
per time step, o!ering a substantial improvement in e"-
ciency compared to previous VarQITE approaches.

Fig. 8 summarizes our results on the reconstructed
masses and the jet assignment, which are compara-
ble to those using ma-QAOA, outperforming conven-
tional FALQON or QAOA. Please describe parame-
ters/initialization used to run VarQITE, if any.

V. COMPARISON OF DIFFERENT
ALGORITHMS

We have briefly reviewed VQAs (QAOA and its vari-
ants, ma-QAOA and XQAOA) as well as a feedback
based algorithm (FALQON). In this section, we present
all results as a function of the boostness of the mother
particles (two top quarks) [16], since boosted particles
lead to the collimated daughter particles, which are eas-
ier to resolve.

In Fig. 9, we show the matching accuracy of QAOA
(solid, yellow), ma-QAOA (dashed, orange), FALQON
(dotted, red) and the hemisphere method (black, dot-
dashed) for parton-level events using H0, Eq. (1), on
the left and using full Hamiltonian H2, Eq. (1) and Eq.
(5), on the right. As stated at the end of the introduc-
tion, the matching accuracy represents the e"ciency of
each method, indicating the fraction of events that are
successfully resolved by each approach.

The boostness is illustrated by mtt̄/(2mt), where mtt̄

is the invariant mass of the two top quarks and mt is
the top quark mass. The shaded region represents the
matching accuracy for a theoretical algorithm that chose
the minimum eigenstate for every event, indicating the
e!ectiveness of the Hamiltonian. Any quantum algo-
rithms that we consider can not lead to results that are
better than the minimum of the shaded region. The
region around mtt̄/(2mt) ↗ 1 represents the threshold
production, where the decay products of the top quarks
are approximately isotropically distributed. In this case,
the combinatorial problem is harder to resolve and the
matching accuracy is low for all methods. In particular,
the hemisphere method is significantly a!ected by the
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Data re-uploading for a universal quantum classifier

quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit

(a) Neural network (b) Quantum classifier

Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit

(a) Neural network (b) Quantum classifier

Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit
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Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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cation.
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limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
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that the original data are processed several times, one
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speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit
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Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the
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quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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data along with the computation. Following the com-
parison with an artificial neural network with a single
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matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
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and a single-qubit quantum classifier with data re-uploading.
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quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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Figure 2: Single-qubit classifier with data re-uploading. The

quantum circuit is divided into layer gates L(i), which con-

stitutes the classifier building blocks. In the upper circuit,

each of these layers is composed of a U(x̨) gate, which up-

loads the data, and a parametrized unitary gate U(„̨). We

apply this building block N times and finally compute a cost

function that is related to the fidelity of the final state of

the circuit with the corresponding target state of its class.

This cost function may be minimized by tunning the „̨i pa-

rameters. Eventually, data and tunable parameters can be

introduced with a single unitary gate, as illustrated in the

bottom circuit.

networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
!
w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
i + w̨(k)

i ¶ x̨(k)
2

· · · U
1

◊̨(1)
i + w̨(1)

i ¶ x̨(1)
2

,

(6)

where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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Figure 2: Single-qubit classifier with data re-uploading. The

quantum circuit is divided into layer gates L(i), which con-

stitutes the classifier building blocks. In the upper circuit,

each of these layers is composed of a U(x̨) gate, which up-

loads the data, and a parametrized unitary gate U(„̨). We

apply this building block N times and finally compute a cost

function that is related to the fidelity of the final state of

the circuit with the corresponding target state of its class.

This cost function may be minimized by tunning the „̨i pa-

rameters. Eventually, data and tunable parameters can be

introduced with a single unitary gate, as illustrated in the

bottom circuit.

networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
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w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
i + w̨(k)
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· · · U
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◊̨(1)
i + w̨(1)

i ¶ x̨(1)
2

,

(6)

where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
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i x1, w2
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is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
i + w̨(k)

i ¶ x̨(k)
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where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
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product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
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where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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to measure any state with a full tomography process
which, for one qubit, is achievable. However, for many
di↵erent classes, we expect that one measurement will
be more e�cient than many.

Besides the weighted fidelity cost function being
costlier than the fidelity cost function, there is another
qualitative di↵erence between both. The fidelity cost
function forces the parameters to reach the maximum
in fidelities. Loosely speaking, this fidelity moves the
qubit state to where it should be. The weighted fi-
delity forces the parameters to be close to a specified
configuration of fidelities. It moves the qubit state to
where it should be and moves it away from where it
should not. Therefore, we expect that the weighted fi-
delity will work better than the fidelity cost function.
Moreover, this extra cost in terms of the number of
parameters of the weighted fidelity cost function will
only a↵ect the classical minimization part of the al-
gorithm. In a sense, we are increasing the classical
processing part to reduce the quantum resources re-
quired for the algorithm, i.e. the number of quantum
operations (layers). This fact gain importance in the
NISQ computation era.

3 Universality of the single-qubit clas-
sifier
After analyzing several classification problems, we ob-
tain evidence that the single-qubit classifier intro-
duced above can approximate any classification func-
tion up to arbitrary precision. In this section, we pro-
vide the motivation for this statement based on the
Universal Approximation Theorem (UAT) of artificial
neural networks [12].

3.1 Universal Approximation Theorem
Theorem– Let Im = [0, 1]

m be the m-dimensional unit
cube and C(Im) the space of continuous functions in
Im. Let the function Ï : R æ R be a nonconstant,
bounded and continuous function and f : Im æ R
a function. Then, for every ‘ > 0, there exists an
integer N and a function h : Im æ R, defined as

h(x̨) =

Nÿ

i=1
–i Ï (w̨i · x̨ + bi) , (10)

with –i, bi œ R and w̨i œ Rm, such that h is an ap-
proximate realization of f with precision ‘, i.e.,

|h(x̨) ≠ f(x̨)| < ‘ (11)

for all x̨ œ Im.
In artificial neural networks, Ï is the activation

function, w̨i are the weights for each neuron, bi are the
biases and –i are the neuron weights that construct
the output function. Thus, this theorem establishes

that it is possible to reconstruct any continuous func-
tion with a single layer neural network of N neurons.
The proof of this theorem for the sigmoidal activation
function can be found in Ref. [18]. This theorem was
generalized for any nonconstant, bounded and contin-
uous activation function in Ref. [12]. Moreover, Ref.
[12] presents the following corollary of this theorem:
Ï could be a nonconstant finite linear combination of
periodic functions, in particular, Ï could be a non-
constant trigonometric polynomial.

3.2 Universal Quantum Circuit Approximation
The single-qubit classifier is divided into several layers
which are general SU(2) rotational matrices. There
exist many possible decompositions of an SU(2) rota-
tional matrix. In particular, we use

U(„̨) = U(„1, „2, „3) = ei„2‡z ei„1‡y ei„3‡z , (12)

where ‡i are the conventional Pauli matrices. Using
the SU(2) group composition law, we can rewrite the
above parametrization in a single exponential,

U(„̨) = eiĘ̂(„̨)·‡̨, (13)

with Ę̂(„̨) =

1
Ê1(„̨), Ê2(„̨), Ê3(„̨)

2
and

Ê1(„̨) = d N sin ((„2 ≠ „3)/2) sin („1/2) , (14)

Ê2(„̨) = d N cos ((„2 ≠ „3)/2) sin („1/2) , (15)

Ê3(„̨) = d N sin ((„2 + „3)/2) cos („1/2) , (16)

where N =
!Ô

1 ≠ cos2 d
"≠1

and cos d =

cos ((„2 + „3)/2) cos („1/2).
The single-qubit classifier codifies the data points

into „̨ parameters of the U unitary gate. In particu-
lar, we can re-upload data together with the tunable
parameters as defined in Eq. (5), i.e.

„̨(x̨) = („1(x̨), „2(x̨), „3(x̨)) = ◊̨ + w̨ ¶ x̨. (17)

Thus,

U(x̨) = UN (x̨)UN≠1(x̨) · · · U1(x̨) =

NŸ

i=1
eiĘ̂(„̨i(x̨))·‡̨,

(18)

Next, we apply the Baker-Campbell-Hausdor↵ (BCH)
formula [19] to the above equation,

U(x̨) = exp

C
i

Nÿ

i=1
Ę̂(„̨i(x̨)) · ‡̨ + Ocorr

D
. (19)

Notice that the remaining BCH terms Ocorr are
also proportional to Pauli matrices due to [‡i, ‡j ] =

2i‘ijk‡k.
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for all x̨ œ Im.
In artificial neural networks, Ï is the activation

function, w̨i are the weights for each neuron, bi are the
biases and –i are the neuron weights that construct
the output function. Thus, this theorem establishes

that it is possible to reconstruct any continuous func-
tion with a single layer neural network of N neurons.
The proof of this theorem for the sigmoidal activation
function can be found in Ref. [18]. This theorem was
generalized for any nonconstant, bounded and contin-
uous activation function in Ref. [12]. Moreover, Ref.
[12] presents the following corollary of this theorem:
Ï could be a nonconstant finite linear combination of
periodic functions, in particular, Ï could be a non-
constant trigonometric polynomial.

3.2 Universal Quantum Circuit Approximation
The single-qubit classifier is divided into several layers
which are general SU(2) rotational matrices. There
exist many possible decompositions of an SU(2) rota-
tional matrix. In particular, we use

U(„̨) = U(„1, „2, „3) = ei„2‡z ei„1‡y ei„3‡z , (12)

where ‡i are the conventional Pauli matrices. Using
the SU(2) group composition law, we can rewrite the
above parametrization in a single exponential,

U(„̨) = eiĘ̂(„̨)·‡̨, (13)

with Ę̂(„̨) =

1
Ê1(„̨), Ê2(„̨), Ê3(„̨)

2
and

Ê1(„̨) = d N sin ((„2 ≠ „3)/2) sin („1/2) , (14)

Ê2(„̨) = d N cos ((„2 ≠ „3)/2) sin („1/2) , (15)

Ê3(„̨) = d N sin ((„2 + „3)/2) cos („1/2) , (16)

where N =
!Ô

1 ≠ cos2 d
"≠1

and cos d =

cos ((„2 + „3)/2) cos („1/2).
The single-qubit classifier codifies the data points

into „̨ parameters of the U unitary gate. In particu-
lar, we can re-upload data together with the tunable
parameters as defined in Eq. (5), i.e.

„̨(x̨) = („1(x̨), „2(x̨), „3(x̨)) = ◊̨ + w̨ ¶ x̨. (17)

Thus,

U(x̨) = UN (x̨)UN≠1(x̨) · · · U1(x̨) =

NŸ

i=1
eiĘ̂(„̨i(x̨))·‡̨,

(18)

Next, we apply the Baker-Campbell-Hausdor↵ (BCH)
formula [19] to the above equation,

U(x̨) = exp

C
i

Nÿ

i=1
Ę̂(„̨i(x̨)) · ‡̨ + Ocorr

D
. (19)

Notice that the remaining BCH terms Ocorr are
also proportional to Pauli matrices due to [‡i, ‡j ] =

2i‘ijk‡k.
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Example: binary classification

1907.02085

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.50 0.75 – 0.50 0.76 – 0.76 –

2 0.85 0.80 0.73 0.94 0.96 0.96 0.96 0.96

3 0.85 0.81 0.93 0.94 0.97 0.95 0.97 0.96

4 0.90 0.87 0.87 0.94 0.97 0.96 0.97 0.96

5 0.89 0.90 0.93 0.96 0.96 0.96 0.96 0.96

6 0.92 0.92 0.90 0.95 0.96 0.96 0.96 0.96

8 0.93 0.93 0.96 0.97 0.95 0.97 0.95 0.96

10 0.95 0.94 0.96 0.96 0.96 0.96 0.96 0.97

Table 1: Results of the single- and multi-qubit classifiers with data re-uploading for the circle problem. Numbers indicate the

success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.” refer

to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with the

weighted fidelity and fidelity cost functions. For this problem, both cost functions lead to high success rates. The multi-qubit

classifier increases this success rate but the introduction of entanglement does not a�ect it significantly.

is 50%. We create a train dataset with 200 random
entries. We then validate the single-qubit classifier
against a test dataset with 4000 random points.

The results of this classification are written in Ta-
ble 1. With the weighted fidelity cost function, the
single-qubit classifier achieves more than 90% of suc-
cess with only two layers, that is, 12 parameters. The
results are worse with the fidelity cost function. For
a two-qubit and a four-qubit classifier, two layers are
required to achieve 96% of success rate, that is, 22 pa-
rameters for the two-qubit and 42 for the four-qubit.
The introduction of entanglement does not change the
result in any case. The results show a saturation of
the success rate. Considering more layers or more
qubits does not change this success rate.

The characterization of a closed curved is a hard
problem for an artificial neural network that works
in a linear regime, although enough neurons, i.e. lin-
ear terms, can achieve a good approximation to any
function. On the contrary, the layers of a single-qubit
classifier are rotational gates, which have an intrinsic
non-linear behavior. In a sense, a circle becomes an
easy function to classify as a linear function is for an
artificial neural network. The circle classification is,
in a sense, trivial for a quantum classifier. We need
to run these classifiers with more complex figures or
problems to test their performance.

It is interesting to compare classifiers with di↵erent
number of layers. Figure 6 shows the result of the
classification for a single-qubit classifier of 1, 2, 4 and
8 layers. As with only one layer the best classification
that can be achieved consist on dividing the plane in
half, with two layers the classifier catches the circular
shape. As we consider more layers, the single-qubit
classifier readjust the circle to match the correct ra-
dius.

(a) 1 layer (b) 2 layers

(c) 4 layers (d) 8 layers

Figure 6: Results of the circle classification obtained with a

single-qubit classifier with di�erent number of layers using the

L-BFGS-B minimizer and the weighted fidelity cost function.

With one layer, the best that the classifier can do is to divide

the plane in half. With two layers, it catches the circular

shape which is readjusted as we consider more layers.

6.2 Classification of multiple patterns
We want to show now that the single-qubit classifier
can solve multi-class problems. We divide a 2D plane
into several regions and assign a label to each one.
We propose the following division: three regions cor-
responding to three circular sectors and the interme-
diate space between them. We call this problem the
3-circles problem. This is a hardly non-linear prob-
lem and, consequently, di�cult to solve for a classical
neural network in terms of computational power.
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‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.50 0.75 – 0.50 0.76 – 0.76 –

2 0.85 0.80 0.73 0.94 0.96 0.96 0.96 0.96

3 0.85 0.81 0.93 0.94 0.97 0.95 0.97 0.96

4 0.90 0.87 0.87 0.94 0.97 0.96 0.97 0.96

5 0.89 0.90 0.93 0.96 0.96 0.96 0.96 0.96

6 0.92 0.92 0.90 0.95 0.96 0.96 0.96 0.96

8 0.93 0.93 0.96 0.97 0.95 0.97 0.95 0.96

10 0.95 0.94 0.96 0.96 0.96 0.96 0.96 0.97

Table 1: Results of the single- and multi-qubit classifiers with data re-uploading for the circle problem. Numbers indicate the

success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.” refer

to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with the

weighted fidelity and fidelity cost functions. For this problem, both cost functions lead to high success rates. The multi-qubit

classifier increases this success rate but the introduction of entanglement does not a�ect it significantly.

is 50%. We create a train dataset with 200 random
entries. We then validate the single-qubit classifier
against a test dataset with 4000 random points.

The results of this classification are written in Ta-
ble 1. With the weighted fidelity cost function, the
single-qubit classifier achieves more than 90% of suc-
cess with only two layers, that is, 12 parameters. The
results are worse with the fidelity cost function. For
a two-qubit and a four-qubit classifier, two layers are
required to achieve 96% of success rate, that is, 22 pa-
rameters for the two-qubit and 42 for the four-qubit.
The introduction of entanglement does not change the
result in any case. The results show a saturation of
the success rate. Considering more layers or more
qubits does not change this success rate.

The characterization of a closed curved is a hard
problem for an artificial neural network that works
in a linear regime, although enough neurons, i.e. lin-
ear terms, can achieve a good approximation to any
function. On the contrary, the layers of a single-qubit
classifier are rotational gates, which have an intrinsic
non-linear behavior. In a sense, a circle becomes an
easy function to classify as a linear function is for an
artificial neural network. The circle classification is,
in a sense, trivial for a quantum classifier. We need
to run these classifiers with more complex figures or
problems to test their performance.

It is interesting to compare classifiers with di↵erent
number of layers. Figure 6 shows the result of the
classification for a single-qubit classifier of 1, 2, 4 and
8 layers. As with only one layer the best classification
that can be achieved consist on dividing the plane in
half, with two layers the classifier catches the circular
shape. As we consider more layers, the single-qubit
classifier readjust the circle to match the correct ra-
dius.

(a) 1 layer (b) 2 layers

(c) 4 layers (d) 8 layers

Figure 6: Results of the circle classification obtained with a

single-qubit classifier with di�erent number of layers using the

L-BFGS-B minimizer and the weighted fidelity cost function.

With one layer, the best that the classifier can do is to divide

the plane in half. With two layers, it catches the circular

shape which is readjusted as we consider more layers.

6.2 Classification of multiple patterns
We want to show now that the single-qubit classifier
can solve multi-class problems. We divide a 2D plane
into several regions and assign a label to each one.
We propose the following division: three regions cor-
responding to three circular sectors and the interme-
diate space between them. We call this problem the
3-circles problem. This is a hardly non-linear prob-
lem and, consequently, di�cult to solve for a classical
neural network in terms of computational power.

Accepted in Quantum 2020-01-27, click title to verify. Published under CC-BY 4.0. 10

The number of parameters = 3 N



Example: 4 classes

1907.02085

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.73 0.56 – 0.75 0.81 – 0.88 –

2 0.79 0.77 0.78 0.76 0.90 0.83 0.90 0.89

3 0.79 0.76 0.75 0.78 0.88 0.89 0.90 0.89

4 0.84 0.80 0.80 0.86 0.84 0.91 0.90 0.90

5 0.87 0.84 0.81 0.88 0.87 0.89 0.88 0.92

6 0.90 0.88 0.86 0.85 0.88 0.89 0.89 0.90

8 0.89 0.85 0.89 0.89 0.91 0.90 0.88 0.91

10 0.91 0.86 0.90 0.92 0.90 0.91 0.87 0.91

Table 2: Results of the single- and multi-qubit classifiers with data re-uploading for the 3-circles problem. Numbers indicate

the success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.”

refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with

the weighted fidelity and fidelity cost functions. Weighted fidelity cost function presents better results than the fidelity cost

function. The multi-qubit classifier reaches 0.90 success rate with a lower number of layers than the single-qubit classifier.

The introduction of entanglement slightly increases the success rate respect the non-entangled circuit.

Table 2 shows the results for this four-class prob-
lem. For a single-qubit classifier, a maximum of 92%
of success is achieved with 10 layers, i.e. 54 parame-
ters. From these results, it seems that this problem
also saturates around 91% of success. However, the
introduction of more qubits and entanglement makes
possible this result possible with less parameters. For
two qubits with entanglement, 4 layers are necessary
to achieve the same success as with a single-qubit, i.e.
34 parameters. For four qubits without entanglement
4 layers are also required. Notice also that, although
the number of parameters increases significantly with
the number of qubits, some of the e↵ective operations
are performed in parallel.

There is an e↵ect that arises from this more com-
plex classification problem: local minima. Notice that
the success rate can decrease when we add more layers
into our quantum classifier.

As with the previous problem, it is interesting to
compare the performance in terms of sucess rate of
classifiers with di↵erent number of layers. Figure 7
shows the results for a two-qubit classifier with no en-
tanglement for 1, 3, 4 and 10 layers. Even with only
one layer, the classifier identifies the four regions, be-
ing the more complicated to describe the central one.
As we consider more layers, the classifier performs
better and adjust these four regions.

6.3 Classification in multiple dimensions
As explained in Section 2, there is no restriction in
uploading multidimensional data. We can upload up
to three values per rotation since this is the degrees of
freedom of a SU(2) matrix. If the dimension of data is
larger than that, we can just split the data vector into
subsets and upload each one at a time, as described
explicitly in Eq. (6). Therefore, there is no reason to
limit the dimension of data to the number of degrees
of freedom of a qubit. We can in principle upload any

(a) 1 layer (b) 3 layers

(c) 4 layers (d) 10 layers

Figure 7: Results for the 3-circles problem using a single-

qubit classifier trained with the L-BFGS-B minimizer and the

weighted fidelity cost function. With one layer, the classifier

intuits the four regions although the central one is di�cult

to tackle. With more layers, this region is clearer for the

classifier and it tries to adjust the circular regions.

kind of data if we apply enough gates.

Following this idea we will now move to a more
complicated classification using data with 4 coordi-
nates. We use as a problem the four-dimensional
sphere, i.e. classifying data points according to
x2

1 + x2
2 + x2

3 + x2
4 < 2/fi. Similarly with the previous

problems, xi œ [≠1, 1] and the radius has been chosen
such that the volume of the hypersphere is half of the
total volume. This time, we will take 1000 random
points as the training set because the total volume
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‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.73 0.56 – 0.75 0.81 – 0.88 –

2 0.79 0.77 0.78 0.76 0.90 0.83 0.90 0.89

3 0.79 0.76 0.75 0.78 0.88 0.89 0.90 0.89

4 0.84 0.80 0.80 0.86 0.84 0.91 0.90 0.90

5 0.87 0.84 0.81 0.88 0.87 0.89 0.88 0.92

6 0.90 0.88 0.86 0.85 0.88 0.89 0.89 0.90

8 0.89 0.85 0.89 0.89 0.91 0.90 0.88 0.91

10 0.91 0.86 0.90 0.92 0.90 0.91 0.87 0.91

Table 2: Results of the single- and multi-qubit classifiers with data re-uploading for the 3-circles problem. Numbers indicate

the success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.”

refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with

the weighted fidelity and fidelity cost functions. Weighted fidelity cost function presents better results than the fidelity cost

function. The multi-qubit classifier reaches 0.90 success rate with a lower number of layers than the single-qubit classifier.

The introduction of entanglement slightly increases the success rate respect the non-entangled circuit.

Table 2 shows the results for this four-class prob-
lem. For a single-qubit classifier, a maximum of 92%
of success is achieved with 10 layers, i.e. 54 parame-
ters. From these results, it seems that this problem
also saturates around 91% of success. However, the
introduction of more qubits and entanglement makes
possible this result possible with less parameters. For
two qubits with entanglement, 4 layers are necessary
to achieve the same success as with a single-qubit, i.e.
34 parameters. For four qubits without entanglement
4 layers are also required. Notice also that, although
the number of parameters increases significantly with
the number of qubits, some of the e↵ective operations
are performed in parallel.

There is an e↵ect that arises from this more com-
plex classification problem: local minima. Notice that
the success rate can decrease when we add more layers
into our quantum classifier.

As with the previous problem, it is interesting to
compare the performance in terms of sucess rate of
classifiers with di↵erent number of layers. Figure 7
shows the results for a two-qubit classifier with no en-
tanglement for 1, 3, 4 and 10 layers. Even with only
one layer, the classifier identifies the four regions, be-
ing the more complicated to describe the central one.
As we consider more layers, the classifier performs
better and adjust these four regions.

6.3 Classification in multiple dimensions
As explained in Section 2, there is no restriction in
uploading multidimensional data. We can upload up
to three values per rotation since this is the degrees of
freedom of a SU(2) matrix. If the dimension of data is
larger than that, we can just split the data vector into
subsets and upload each one at a time, as described
explicitly in Eq. (6). Therefore, there is no reason to
limit the dimension of data to the number of degrees
of freedom of a qubit. We can in principle upload any

(a) 1 layer (b) 3 layers

(c) 4 layers (d) 10 layers

Figure 7: Results for the 3-circles problem using a single-

qubit classifier trained with the L-BFGS-B minimizer and the

weighted fidelity cost function. With one layer, the classifier

intuits the four regions although the central one is di�cult

to tackle. With more layers, this region is clearer for the

classifier and it tries to adjust the circular regions.

kind of data if we apply enough gates.

Following this idea we will now move to a more
complicated classification using data with 4 coordi-
nates. We use as a problem the four-dimensional
sphere, i.e. classifying data points according to
x2

1 + x2
2 + x2

3 + x2
4 < 2/fi. Similarly with the previous

problems, xi œ [≠1, 1] and the radius has been chosen
such that the volume of the hypersphere is half of the
total volume. This time, we will take 1000 random
points as the training set because the total volume
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Example: 3 classes

1907.02085

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.87 0.87 – 0.87 0.87 – 0.90 –

2 0.87 0.87 0.87 0.87 0.92 0.91 0.90 0.98

3 0.87 0.87 0.87 0.89 0.89 0.97 – –

4 0.89 0.87 0.87 0.90 0.93 0.97 – –

5 0.89 0.87 0.87 0.90 0.93 0.98 – –

6 0.90 0.87 0.87 0.95 0.93 0.97 – –

8 0.91 0.87 0.87 0.97 0.94 0.97 – –

10 0.90 0.87 0.87 0.96 0.96 0.97 – –

Table 3: Results of the single- and multi-qubit classifiers with data re-uploading for the four-dimensional hypersphere problem.

Numbers indicate the success rate, i.e. the number of data points classified correctly over the total number of points. Words

“Ent.” and “No Ent.” refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B

minimization method with the weighted fidelity and fidelity cost functions. The fidelity cost function gets stuck in some local

minima for the multi-qubit classifiers. The results obtained with the weighted fidelity cost function are much better, reaching

the 0.98 with only two layers for the four-qubit classifier. Here, the introduction of entanglement improves significantly the

performance of the multi-qubit classifier.

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.34 0.51 – 0.43 0.77 – 0.81 –

2 0.57 0.63 0.59 0.76 0.79 0.82 0.87 0.96

3 0.80 0.68 0.65 0.68 0.94 0.95 0.92 0.94

4 0.84 0.78 0.89 0.79 0.93 0.96 0.93 0.96

5 0.92 0.86 0.82 0.88 0.96 0.96 0.96 0.95

6 0.93 0.91 0.93 0.91 0.93 0.96 0.97 0.96

8 0.90 0.89 0.90 0.92 0.94 0.95 0.95 0.94

10 0.90 0.91 0.92 0.93 0.95 0.96 0.95 0.95

Table 4: Results of the single- and multi-qubit classifiers with data re-uploading for the three-class annulus problem. Numbers

indicate the success rate, i.e. the number of data points classified correctly over the total number of points. Words “Ent.” and

“No Ent.” refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization

method with the weighted fidelity and fidelity cost functions. The weighted fidelity cost function presents better success rates

than the fidelity cost function. The multi-qubit classifiers improve the results obtained with the single-qubit classifier but the

using of entanglement does not introduce significant changes.

increases.
Results are shown in Table 3. A single-qubit

achieves 97% of success with eight layers (82 parame-
ters) using the weighted fidelity cost function. Results
are better if we consider more qubits. For two qubits,
the best result is 98% and it only requires three en-
tangled layers (62 parameters). For four qubits, it
achieves 98% success rate with two layers with entan-
glement, i.e. 82 parameters.

6.4 Classification of non-convex figures
As a final benchmark, we propose the classification of
a non-convex pattern. In particular, we classify the
points of an annulus with radii r1 =


0.8 ≠ 2/fi and

r2 =
Ô

0.8. We fix three classes: points inside the
small circle, points in the annulus and points outside
the big circle. So, besides it being a non-convex clas-
sification task, it is also a multi-class problem. A sim-
pler example, with binary classification, can be found

in Appendix B.
The results are shown in Table 4. It achieves 93% of

success with a single-qubit classifier with 10 layers and
a weighted fidelity cost function. With two qubits, it
achieves better results, 94% with three layers. With
four qubits, it reaches a 96% success rate with only
two layers with entanglement.

It is interesting to observe how the single-qubit clas-
sifier attempts to achieve the maximum possible re-
sults as we consider more and more layers. Figure 8
shows this evolution in terms of the number of layers
for a single-qubit classifier trained with the weighted
fidelity cost function. It requires four layers to learn
that there are three concentric patterns and the ad-
dition of more layers adjusts these three regions.

6.5 Comparison with classical classifiers
It is important to check if our proposal is in some
sense able to compete with actual technology of su-
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(a) 1 layer (b) 2 layers (c) 3 layers (d) 4 layers

(e) 5 layers (f) 6 layers (g) 8 layers (h) 10 layers

Figure 8: Results obtained with the single-qubit classifier for the annulus problem, using the weighted fidelity cost function

during the training. The better results are obtained with a 10 layers classifier (93% of success rate). As we consider more

qubits and entanglement, we can increase the success rate up to 96%, as shows Table 4.

pervised machine learning. To do so we have used the
standard machine learning library scikit-learn [22]
and solved the same problems as we have solved with
the quantum classifier. We have included the four
problems presented in the main paper plus five extra
problems analyzed in Appendix B. The aim of this
classical benchmarking is not to make an extended
review of what classical machine learning is capable
to perform. The aim is to compare our simple quan-
tum classifier to simple models such as shallow neural
networks and simple support vector machines.

The technical details of the classical classification
are the following: the neural network has got one hid-
den layer with 100 neurons, a ReLu activation func-
tion and the solver lbfgs by scikit-learn. The sup-
port vector machine is the default sklearn.svm.SVC.
Some changes in the initialization parameters were
tested with no significant di↵erences.

Table 5 compares the best performance of a neural
network, support vector classifier (SVC), the single-
qubit classifier with fidelity cost function and single-
qubit classifier with a weighted fidelity cost function.
In all problems, the performance of the single-qubit
classifier is, at least, comparable with the classical
methods. In some problems, like the 3-circles problem
and the binary annulus problem, the results of the
single-qubit classifier are better than with the classical
methods.

7 Conclusions
We have proposed a single-qubit classifier that can
represent multidimensional complex figures. The core
of this quantum classifier is the data re-uploading.
This formalism allows circumventing the limitations
of the no-cloning theorem to achieve a correct gener-
alization of an artificial neural network with a single
layer. In that sense, we have applied the Universal
Approximation Theorem to prove the universality of
a single-qubit classifier.
The structure of this classifier is the following.

Data and processing parameters are uploaded mul-
tiple times along the circuit by using one-qubit rota-
tions. The processing parameters of these rotations
are di↵erent at each upload and should be optimized
using a classical minimization algorithm. To do so, we
have defined two cost functions: one inspired in the
traditional neural networks cost functions (weighted
fidelity cost function) and the other, simpler, consist-
ing of the computation of the fidelity of the final state
with respect to a target state. These target states
are defined to be maximally orthogonal among them-
selves. Then, the single-qubit classifier finds the opti-
mal rotations to separate the data points into di↵erent
regions of the Bloch sphere, each one corresponding
with a particular class.
The single-qubit classifier can be generalized to a

larger number of qubits. This allows the introduction
of entanglement between these qubits by adding two-
qubit gates between each layer of rotations. We use
a particular entangling ansantz as a proof of concept.
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Single qubit classifier: example

1907.02085

Problem
Classical classifiers Quantum classifier

NN SVC ‰2
f ‰2

wf

Circle 0.96 0.97 0.96 0.97

3 circles 0.88 0.66 0.91 0.91

Hypersphere 0.98 0.95 0.91 0.98

Annulus 0.96 0.77 0.93 0.97

Non-Convex 0.99 0.77 0.96 0.98

Binary annulus 0.94 0.79 0.95 0.97

Sphere 0.97 0.95 0.93 0.96

Squares 0.98 0.96 0.99 0.95

Wavy Lines 0.95 0.82 0.93 0.94

Table 5: Comparison between single-qubit quantum classifier and two well-known classical classification techniques: a neural

network (NN) with a single hidden layer composed of 100 neurons and a support vector classifier (SVC), both with the default

parameters as defined in scikit-learn python package. We analyze nine problems: the first four are presented in Section 6

and the remaining five in Appendix B. Results of the single-qubit quantum classifier are obtained with the fidelity and weighted

fidelity cost functions, ‰2
f and ‰2

wf defined in Eq. (7) and Eq. (9) respectively. This table shows the best success rate, being

1 the perfect classification, obtained after running ten times the NN and SVC algorithms and the best results obtained with

single-qubit classifiers up to 10 layers.

The exploration of other possible ansatzes is out of
the scope of this work.

We have benchmarked several quantum classifiers
of this kind, made of a di↵erent number of layers,
qubits and with and without entanglement. The pat-
terns chosen to test these classifiers are the points
inside and outside of a circle (simple example) and
similarly for a four-dimensional hypersphere (multi-
dimensional example); a two dimensional region com-
posed by three circles of di↵erent size (multiple classes
example); and the points outside and inside of an an-
nulus (non-convex example). In all cases, the single-
qubit classifier achieves more than 90% of the success
rate. The introduction of more qubits and entangle-
ment increases this success and reduces the number
of layers required. The weighted fidelity cost function
turns out to be more convenient to achieve better re-
sults than the fidelity cost function. In all problems,
the probability to get stuck in a local minima increases
with the number of layers, an expected result from an
optimization problem involving several parameters.

In summary, we have proposed a quantum classifier
model that seems to be universal by exploiting the
non-linearities of the single-qubit rotational gates and
by re-uploading data several times.
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Comparison between single-qubit quantum classifier and two well-known classical 
classification techniques: a neural network (NN) with a single hidden layer composed 
of 100 neurons and a support vector classifier (SVC), both with the default parameters 
as defined in scikit-learn python package. This table shows the best success rate, being 
1 the perfect classification, obtained after running ten times the NN and SVC 
algorithms and the best results obtained with single-qubit classifiers up to 10 layers. 





Quantum Annealing  
(Gradient-Free quantum optimization)

•  is the problem Hamiltonian whose ground state encodes the solution to the 
optimization problem 

•  is the initial Hamiltonian whose ground state is easy to prepare. 

• Prepare a quantum system to be in the ground state of  and evolve the system 
using the following time-dependent Hamiltonian,  

• The system will remain to its ground state at all times for a large T, which means 
for t=T, the system will be in the ground state of , our problem Hamiltonian. 

• D-wave has built Quantum Annealing that solves optimization problem by 
transferring the original optimization to a hardware, that allows nearest neighbor 
interaction of qubits. 

• Compared to the processing time of O(2^n) with the simplest but a robust brute-
force scanning algorithm with a classical computer, a quantum annealer can have 
an enormous advantage in the computation complexity as 

Hp

H0

H0

Hp

H(t) = (1 −
t
T ) H0 +

t
T

Hp

Apolloni, Bianchi, De Falco 1988
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FIG. 2. We choose an event from detector level MC samples
of EEq.q. (7c) to calculate (a) energy spectrum of HQUBO

with increasing indices of spin states, (b) histogram of energy
spectrum of HQUBO for all possible 212(= 4096) spin states.

for a given spin state {si}. In Fig. 2 we show (a) the
energy spectrum of HQUBO and (b) histogram of en-
ergy spectrum of HQUBO with an event from a four top-
quark production process as in Eq. (7c). For the order-
ing of spin states in Fig. 2(a), we increase a spin state
by flipping a spin in an increasing order based on a bi-
nary digit. For example with four spins, the spin order
(""""!"""#!""#"!""##! · · · ) corresponds to the in-
dex as (0 ! 1 ! 2 ! 3 ! 4 ! · · · ). One can try a con-
ventional procedure called a simulated annealing to find
a global minimum in HQUBO distribution of Eq. (6) [24].
Simulated annealing uses a thermodynamic probability
to find a global ground state. It starts with an initial
temperature T0 and gradually decreases temperature T

to zero degree at each annealing step. In each step, this
algorithm checks whether flipping a spin is beneficial to
get a global minimum. If the energy with flipped spin is
lower than the initial energy, it takes the flipped spin con-
figuration. If not, the spin will be flipped according to
the probability of Boltzmann factor, e�(En+1�En)/kB T .
But when the structure of an energy spectrum with a
spin state is complicated, it will have a local minimum
problem. In our case, the energy spectrum can be ex-
tremely complicated as shown in Fig. 2. In Fig. 2(a), the
energy structure similar to a dense pine tree park neu-
tralizes simulated annealing, as sudden drops and rises
disable the attempt of spin flipping procedures. On top
of this local minimum problem, the population near a
global minimum is sparse as we observe in Fig. 2(b). Thus
we choose to take a quantum advantage to find a global
minimum for a complicated energy distribution.
Quantum advantage. Quantum annealing (QA) is op-
timized to handle problems in a QUBO form. It uses the
adiabatic theorem to find the ground state of a compli-
cated HQUBO starting from the ground state of a trivial
Hamiltonian H0 [25];

HQA(t) = A(t)H0 +B(t)HQUBO, (8)

where H0 =
P

i (s?)i with a new spin set {s?} which is
transverse to the spin set {s} of HQUBO. At the be-
ginning of t = 0, HQA(0) = A(0)H0 as A 6= 0 and
B = 0. Thus the ground state of HQA(0) is the same

Process
pp ! tt̄ pp ! HZ pp ! õõ

⇤

Eq. (7a) Eq. (7b) Eq. (7c)

Success rate 100% 100% 93%

TABLE I. Success rate in finding a global minimum of HQUBO

using D-Wave Advantage™.

as the ground state of H0. By adiabatically decreasing
A to 0 but increasing B with a time t, the ground state
of H0 can be transmitted to the ground state of HQUBO

via HQA. To realize QA process of Eq. (8), we use a com-
mercial D-Wave Advantage™ which has 5000+ available
spins (=qubits) [26].
Most of time spent by a QA procedure is dedicated to

a preparation step, while required time for an annealing
process is independent on the size of inputs. In our case
with Eq. (3), preparation time TQUBO is of O(n2). Com-
pared to the processing time of O(2n) with the simplest
but a robust brute-force scanning algorithm with a classi-
cal computer, a quantum annealer can have an enormous
advantage in the computational complexity as

TQUBO(n) ⇠ O(n2) ⌧ O(2n), (9)

In Table I, we illustrate the performance of a quantum
annealer in finding a global minimum. Monte Carlo sam-
ples for HQUBO are generated as in the previous section.
As we notice, current quantum annealer achieves a good
performance to find a global minimum for complicated
energy distributions which is not possible with simulated
annealing. By assigning jets into either A orB, we can re-
construct the four-momenta of A and B to identify their
properties as in Fig. 3. Reconstructed mass MA and MB

with HQUBO algorithm spots the true mass point (Top
panel in Fig. 3). The most populated number of clustered
jets in A is equal to the true number of decayed particles
from A (Bottom panel in Fig. 3) for a hadronically de-
caying top quark in Eq. (7a), a higgs decaying into four
jets via W

± bosons in Eq. (7b) and a color octet scalar õ
which decays into a top-quark pair, resulting in six jets
as in Eq. (7c). We can apply HQUBO sequentially to find
the substructures of A and B;

H
(A)

QUBO
=

X̀

ij=1

J
0↵
ij s

↵
i s

↵
j +

X̀

i=1

h
0↵
i s

↵
i , (10)

H
(B)

QUBO
=

mX

ij=1

J
0�
ij s

�
i s

�
j +

mX

i=1

h
0�
i s

�
i , (11)

where {s
↵
i } is a spin set for particles clustered into A

and {s
�
i } is the one for particles assigned to B after min-

imizing an original HQUBO. Here ` and m vary in an
event by event basis, only need to satisfy ` + m = n.
We get additional constraints for the number of inter-
mediate particles from the decay of each of A and B as
A ! A1, A2 and B ! B1, B2. In Fig. 4, we present the
result of above sequential application to the most com-
plicated process of Eq. (7c). Sequential QA reveals the



Quantum Approximate Optimization 
Algorithm (QAOA)

1411.4028, E. Farhi, J. Goldstone, S. Gutmann• Abstract: We introduce a quantum algorithm that 
produces approximate solutions for combinatorial 
optimization problems. The algorithm depends on a 
positive integer p and the quality of the 
approximation improves as p is increased. The 
quantum circuit that implements the algorithm 
consists of unitary gates whose locality is at most the 
locality of the objective function whose optimum is 
sought. The depth of the circuit grows linearly with p 
times (at worst) the number of constraints. If p is 
fixed, that is, independent of the input size, the 
algorithm makes use of efficient classical 
preprocessing. If p grows with the input size a 
different strategy is proposed. We study the 
algorithm as applied to MaxCut on regular graphs 
and analyze its performance on 2-regular and 3-
regular graphs for fixed p. For p = 1, on 3-regular 
graphs the quantum algorithm always finds a cut that 
is at least 0.6924 times the size of the optimal cut.



Experimental realization 

Experimental Quantum Computing to Solve Systems of Linear Equations
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Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly

growing data sets, such a task can be intractable for classical computers, as the best known classical

algorithms require a time proportional to the number of variables N. A recently proposed quantum

algorithm shows that quantum computers could solve linear systems in a time scale of order logðNÞ, giving
an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm,

solving 2# 2 linear equations for various input vectors on a quantum computer. We use four quantum bits

and four controlled logic gates to implement every subroutine required, demonstrating the working

principle of this algorithm.

DOI: 10.1103/PhysRevLett.110.230501 PACS numbers: 03.67.Ac, 03.65.Ud, 03.67.Lx, 42.50.$p

The problem of solving a system of linear equations
plays a central role in diverse fields such as signal process-
ing, economics, computer science, and physics. Such sys-
tems often involve tera or even petabytes of data, and thus
the number of variables N, is exceedingly large. However,
the best known algorithms for solving a system of N linear
equations on classical computers requires a time complex-
ity on the order of N, posing a formidable challenge.

Harnessing the superposition principle of quantum
mechanics, quantum computers [1,2] promise to provide
exponential speedup over their classical counterparts for
certain tasks. Notable examples include quantum simula-
tion [3,4] and Shor’s quantum factoring algorithm [5],
which have driven the field of quantum information over
the past two decades as well as generating significant
interest in quantum technologies that have enabled experi-
mental demonstrations of the quantum algorithms in differ-
ent physical systems [6–10].

Recently, Harrow et al. [11] proposed another powerful
application of quantum computing for the very practical
problem of solving systems of linear equations. They
showed that a quantum computer can solve a system of
linear equations exponentially faster than a classical com-
puter in situations that we are only interested in expectation
values of an operator associated with the solution rather
than the full solution. A quantum algorithm has been
designed such that the value of this property may be
estimated to any fixed desired accuracy within Oð logðNÞÞ
time, making it one of the most promising applications of
quantum computers.

In this article, we report an experimental demonstration
of the simplest meaningful instance of this algorithm, that

is, solving 2# 2 linear equations for various input vectors.
The quantum circuit is optimized and compiled into a
linear optical network with four photonic quantum bits
(qubits) and four controlled logic gates, which is used to
coherently implement every subroutine for this algorithm.
For various input vectors, the quantum computer gives
solutions for the linear equations with reasonably high
precision, ranging from fidelities of 0.825 to 0.993.
The problem of solving linear equations can be summa-

rized as follows: We aim to solve A~x ¼ ~b for ~x, when

given a N # N Hermitian matrix A and a vector ~b. To

adapt this problem to quantum processing, ~x and ~b are

scaled to unit length (i.e., k ~xk ¼ k ~bk ¼ 1). Thus, a vector
~b can be represented by a quantum state jbi ¼ P

ibijii on
Oð logðNÞÞ qubits where jii denotes the computational
basis. The desired solution ~x can then be encoded within
the quantum state as

jxi ¼ cA$1jbi; c$1 ¼ kA$1jbik: (1)

The quantum algorithm devised in Ref. [11] was designed
to synthesize jxi [see Fig. 1(a)]. The quantum algorithm
involves the following three subsystems: a single ancilla
qubit initialized in j0i, a register of n qubits of working
memory initialized in j0i&n, and an input state initialized in
jbi. The input state jbi can be expanded in the basis of juji
as jbi ¼ PN

j¼1 !jjuji, where juji is the eigenstate of A,

and !j ¼ hujjbi. Execution of the algorithm can be
decomposed into the following three subroutines: (1) phase
estimation, (2) controlled rotation, and (3) inverse phase
estimation.

PRL 110, 230501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
7 JUNE 2013

0031-9007=13=110(23)=230501(5) 230501-1 ! 2013 American Physical Society

"A two-qubit photonic quantum processor and its application to solving systems of linear equations". Scientific Reports. 4: 6115.  
“Experimental realization of quantum algorithm for solving linear systems of equations". Physical Review A. 89 (2): 022313 

Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing, Phys.Rev.Lett. 122 (2019) 6, 060504  
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012320.    8 dimensional linear equation.
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P vs NP
• In Theoretical Computer Science, the two most basic classes of problems are 

P and NP.   
• P includes all problems that can be solved “efficiently”.  

– For example: add two numbers. The formal definition of "efficiently" is in time that's 
polynomial in the input's size. 

• NP (nondeterministic polynomial (time)) includes all problems that given a 
solution, one can efficiently verify that the solution is correct. 

– An example is the following problem: given a bunch of numbers, can they be split into 
two groups such that the sum of one group is the same as the other. Clearly, if one is 
given a solution (two groups of numbers), it's simple to verify that the sum is the 
same. (This is a partitioning problem).   

• What's unknown is whether problems such as the one above have an efficient 
algorithm for finding the solution. This is the (in)famous (unsolved) P = NP 
problem, and the common conjecture is that no such algorithm exists.   

• Now, NP hard problems are such problems that were shown that if they can be 
efficiently solved (which, as mentioned, is believed to not be the case), then 
each and every problem in NP (each and every problem whose results can be 
efficiently verified) can be efficiently solved. In other words, if you're up to 
showing that P=NP, you might want to take a stand at any of those NP-hard 
problems since they are "equivalent" in some way to all others.



Equivariant Quantum Neural NetworksA simple example

• Exhibits             symmetry. 
• We hope that the output of 

the machine learning model 
will be invariant under this 
symmetry.

• How can we enforce this 
behavior in quantum 
machine learning?

3
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Figure 2. Pictorial illustration of the second dataset used in this study—the anti-symmetric case (4).

Figure 3. Pictorial illustration of the third dataset used in this study—the fully anti-symmetric case (6).

In this study, we consider simplified two-dimensional datasets that mimic the data
arising in such projections. This setup allows us to focus on the comparison between
different methods, avoiding unnecessary issues that may arise when dealing with actual
particle physics simulation data such as sampling statistics, parton distribution functions,
unknown particle mass spectrum, unknown width, detector effects, etc. We explore EQNNs
and benchmark them against classical neural network models. We find that the variational
quantum circuits learn the data better with the smaller number of parameters and the
smaller training dataset compared to their classical counterparts.

2. Dataset Description
In all three examples, we consider two-dimensional data (x1, x2) on the unit square

(→1 ↑ xi ↑ 1). The data points belong to two classes: y = +1 (blue points) and y = →1
(red points).

(i) Symmetric case:
In the first example (Figure 1), the labels are generated by the function

y(x1, x2) = 2H
(

R →

√
(x1 + 1)2 + (x2 → 1)2

)

+ 2H
(

R →

√
(x1 → 1)2 + (x2 + 1)2

)
→ 1, (1)

Axioms 2024, 13, 188 8 of 13

Figure 6. ROC (left) and accuracy (right) curves for the symmetric (top), anti-symmetric (middle),
and fully anti-symmetric (bottom) example.

The evolution of the accuracy during training and testing is shown in the right panels
of Figure 6. The accuracy converges faster (after only 5 epochs) for the QNN and EQNN
in comparison to their classical counterparts (10–20 epochs). The same color-scheme is
used, but this time, solid curves represent training accuracy, while dashed curves show test
accuracy.

To further quantify the performance of our quantum networks, in Figure 7, we show the
AUC (Area under the ROC Curve) as a function of the number of parameters (left panels)
with a fixed size of the training data (Ntrain = 200), and as a function of the number of training
samples (right panels) with a fixed number of parameters (Nparams = 20). The top, middle,
and bottom panels show results for the symmetric, anti-symmetric, and fully anti-symmetric
dataset. As the number of parameters increases, the performance of all networks improves.
All AUC values become similar when Nparams → 20 (Nparams → 40) for the symmetric (anti-
symmetric) case. As shown in the bottom panels, the performances of all networks become
comparable to each other for both examples once the size of the training data reaches ↑400,

2311.18744
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What is an equivariant neural network?

Lek-Heng Lim ∗ Bradley J. Nelson †

November 18, 2022

We explain equivariant neural networks, a notion
underlying breakthroughs in machine learning from
deep convolutional neural networks for computer vi-
sion [KSH12] to AlphaFold 2 for protein structure
prediction [JEP+21], without assuming knowledge of
equivariance or neural networks. The basic mathe-
matical ideas are simple but are often obscured by
engineering complications that come with practical
realizations. We extract and focus on the mathemat-
ical aspects, and limit ourselves to a cursory treat-
ment of the engineering issues at the end.
Let V and W be sets, and f : V → W a function.

If a group G acts on both V and W, and this action
commutes with the function f :

f(x · v) = x · f(v) for all v ∈ V, x ∈ G,

then we say that f is G-equivariant. The special case
where G acts trivially on W is called G-invariant.
Linear equivariant maps are well-studied in represen-
tation theory and continuous equivariant maps are
well-studied in topology. The novelty of equivariant
neural networks is that they are usually neither lin-
ear nor continuous, even when V and W are vector
spaces and the actions of G are linear.
Equivariance is ubiquitous in applications where

symmetries in the input space V produce symme-
tries in the output space W. We consider a simple
example. An image may be regarded as a function
v : R2 → R3, with each pixel p = (p1, p2) ∈ R2 as-
signed some RGB color (r, g, b) ∈ R3. A simplifying

∗The first author is a professor of computational and ap-
plied mathematics at the University of Chicago. His email
address is lekheng@uchicago.edu.

†The second author is William H. Kruskal Instructor of
computational and applied mathematics at the University of
Chicago. His email address is bradnelson@uchicago.edu.

assumption here is that pixels and colors can take
values in a continuum. Let V = W be the set of all
images. Let the group G = {1, x} ∼= Z/2Z act on V

via top-bottom reflection, i.e., x ·v is the image whose
value at (p1, p2) is v(p1,−p2). Let σ : R3 → R3,

σ(r, g, b) =

{

(0, 0, 0) if r = g = b = 0,

(255, 255, 255) otherwise.

Here (0, 0, 0) and (255, 255, 255) are the RGB encod-
ings for pitch black and pure white respectively. So
the map f : V → V, f(v) = σ ◦ v transforms a color
image into a black-and-white image.

f

x x

f

It does not matter whether we do a top-bottom reflec-
tion first or remove color first, the result is always the
same, i.e., f(x ·v) = x ·f(v) for all v ∈ V — note that
this holds for any color image, not just the butterfly
image. Hence the decoloring map f is G-equivariant.
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spaces and the actions of G are linear.
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example. An image may be regarded as a function
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images. Let the group G = {1, x} ∼= Z/2Z act on V

via top-bottom reflection, i.e., x ·v is the image whose
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assumption here is that pixels and colors can take
values in a continuum. Let V = W be the set of all
images. Let the group G = {1, x} ∼= Z/2Z act on V

via top-bottom reflection, i.e., x ·v is the image whose
value at (p1, p2) is v(p1,−p2). Let σ : R3 → R3,

σ(r, g, b) =

{

(0, 0, 0) if r = g = b = 0,

(255, 255, 255) otherwise.

Here (0, 0, 0) and (255, 255, 255) are the RGB encod-
ings for pitch black and pure white respectively. So
the map f : V → V, f(v) = σ ◦ v transforms a color
image into a black-and-white image.

f

x x

f

It does not matter whether we do a top-bottom reflec-
tion first or remove color first, the result is always the
same, i.e., f(x ·v) = x ·f(v) for all v ∈ V — note that
this holds for any color image, not just the butterfly
image. Hence the decoloring map f is G-equivariant.

1

ar
X

iv
:2

20
5.

07
36

2v
2 

 [c
s.L

G
]  

16
 N

ov
 2

02
2

What is an equivariant neural network?

Lek-Heng Lim ∗ Bradley J. Nelson †

November 18, 2022

We explain equivariant neural networks, a notion
underlying breakthroughs in machine learning from
deep convolutional neural networks for computer vi-
sion [KSH12] to AlphaFold 2 for protein structure
prediction [JEP+21], without assuming knowledge of
equivariance or neural networks. The basic mathe-
matical ideas are simple but are often obscured by
engineering complications that come with practical
realizations. We extract and focus on the mathemat-
ical aspects, and limit ourselves to a cursory treat-
ment of the engineering issues at the end.
Let V and W be sets, and f : V → W a function.

If a group G acts on both V and W, and this action
commutes with the function f :

f(x · v) = x · f(v) for all v ∈ V, x ∈ G,

then we say that f is G-equivariant. The special case
where G acts trivially on W is called G-invariant.
Linear equivariant maps are well-studied in represen-
tation theory and continuous equivariant maps are
well-studied in topology. The novelty of equivariant
neural networks is that they are usually neither lin-
ear nor continuous, even when V and W are vector
spaces and the actions of G are linear.
Equivariance is ubiquitous in applications where

symmetries in the input space V produce symme-
tries in the output space W. We consider a simple
example. An image may be regarded as a function
v : R2 → R3, with each pixel p = (p1, p2) ∈ R2 as-
signed some RGB color (r, g, b) ∈ R3. A simplifying
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(0, 0, 0) if r = g = b = 0,

(255, 255, 255) otherwise.

Here (0, 0, 0) and (255, 255, 255) are the RGB encod-
ings for pitch black and pure white respectively. So
the map f : V → V, f(v) = σ ◦ v transforms a color
image into a black-and-white image.
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image. Hence the decoloring map f is G-equivariant.

1

2205.0736



Qubits and Pauli’s matrices
σ1 = σ x = (0 1

1 0)

σ3 = σz = (1 0
0 −1)

σ2 = σy = (0 −i
i 0 )

R( ⃗θ) = exp (−i
⃗θ ⋅ ⃗σ
2 )

{σi , σj} ≡ σi σj + σj σi = 2δij

[σi , σj] ≡ σi σj − σj σi = 2iϵijkσk

σi σj = 2δij + i ϵijk σk

• Qubit ):  

 

• Conjugate (dual vector or bra-vector):   

 

• A set of all  (ket-vector) forms a vector space 
(Hilbert space)  

• Pauli’s matrices are generators of rotations in two 
dimensional complex plane.

( |ψ⟩ , |ψ⟩) ≡ ⟨ψ |ψ⟩ = 1

|ψ⟩ = cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩ =
cos θ

2

eiϕ sin θ
2

⟨ψ | = cos
θ
2

⟨0 | + e−iϕ sin
θ
2

⟨1 | = (cos θ
2 e−iϕ sin θ

2 )
|ψ⟩

|0⟩ ≡ (1
0) , |1⟩ ≡ (0

1)
| ± ⟩ ≡

|0⟩ ± |1⟩

2
=

1

2 ( 1
±1)

Computational basis

Hadamard basis



• Each (normalized) state of the qubit can be uniquely associated 
with a point on the unit sphere.

Bloch Sphere

|ψ⟩ ⟷ (θ, ϕ) ⟷ ̂r =
sin θ cos ϕ
sin θ sin ϕ

cos θ

|0⟩ : θ = 0 , ϕ = arbitrary ⟶ ̂r = (
0
0
1)

|1⟩ : θ = π , ϕ = arbitrary ⟶ ̂r = (
0
0

−1)
| + ⟩ : θ = π /2 , ϕ = 0 ⟶ ̂r = (

1
0
0)

| − ⟩ : θ = π /2 , ϕ = π ⟶ ̂r = (
−1
0
0 )

| + i⟩ : θ = π /2 , ϕ = π /2 ⟶ ̂r = (
0
1
0)

| + − ⟩ : θ = π /2 , ϕ = 3π /2 ⟶ ̂r = (
0

−1
0 )



• When we perform a measurement onto an orthogonal basis, the 
qubit collapses to one of the basis states with probability given by 
the corresponding amplitude. For example, if we perform a 
projection onto z-axis (the states  and ), we get 

 and .

|0⟩ |1⟩
P(0) = |⟨0 |ψ⟩ |2 = cos2 θ

2
P(1) = |⟨1 |ψ⟩ |2 = sin2 θ

2

Quantum Measurements

• Born rule: the probability that a state  collapses during a 
projective measurement onto a basis  is given 
by  and .

|ψ⟩
{ |x⟩ , |x⊥⟩}

P(x) = |⟨x |ψ⟩ |2 P(x⊥) = |⟨x⊥ |ψ⟩ |2

|ψ⟩ = cos
θ
2

|0⟩ + eiϕ sin
θ
2

|1⟩ =
cos θ

2

eiϕ sin θ
2



Transmon qubit: Capacitor + Josephson junction (JJ)



Traveling salesman problem (TSP)
• Given a list of cities and the distances between each pair 

of cities, what is the shortest possible route that visits 
each city exactly once and returns to the origin city? 

• It is an NP-hard problem in combinatorial optimization, 
important in theoretical computer science and operations 
research.

https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Operations_research


Traveling salesman problem (TSP)
• Performance of the Bellman–Held–Karp algorithm 
• Time Complexity 

– The Bellman-Held-Karp algorithm has a time complexity of , where n is the 
number of cities.  

– This means the runtime increases exponentially with the number of cities, making it 
impractical for very large instances of the TSP.  

– However, this is still significantly better than the brute-force approach that has a time 
complexity of , where 'n' is the number of cities.  

• Space Complexity 
– The algorithm has a space complexity of .  
– This is due to the algorithm needing to store intermediate results in a table, especially 

for storing the shortest path costs for all possible subsets of cities and destination cities.  
– This space requirement can become a limiting factor for larger problems as well.  

• Query complexity of QAOA on TSP: .          (  for a large ) 
– Challenges 

• Implementing QAOA on real quantum hardware 
• Optimization of Parameters:

𝒪(n22n)

𝒪(n!)

𝒪(n2n)

𝒪( n!) n22n ≫ n! n



Traveling salesman problem (TSP)
Ising formulations of many NP problems, 1302.5843

• Label vertices  and the edge set  to be directed. (For undirected, add (uv) and (vu)). 

• Introduce  bits , where  represents the vertex and  represents its order to the edge set. 
• Every vertex can only appear once in a cycle, and that there must be a j-th node in the cycle for each j. 

• For the nodes in our prospective ordering, if  and   are both 1, then there should be an energy 
penalty if .

1,⋯, N (uv)
N2 xv,i v i

xu, j xu, j+1
(uv) ∉ E

undirected) Hamiltonian cycles problem. We then simply add

HB = B
∑

(uv)∈E

Wuv

N
∑

j=1

xu,jxv,j+1. (57)

with B small enough that it is never favorable to violate the constraints of HA; one such constraint is
0 < Bmax(Wuv) < A (we assume in complete generality Wuv → 0 for each (uv) ∈ E).11 If the traveling
salesman does not have to return to his starting position, we can restrict the sum over j from 1 to N − 1,
as before. As with Hamiltonian cycles, (N − 1)2 spins are required, as we may fix node 1 to appear first
in the cycle.

8. Tree Problems

The most subtle NP problems to solve with Ising models are problems which require finding connected
tree subgraphs of larger graphs.12 Because determining whether a subgraph is a tree requires global
information about the connectivity of a graph, we will rely on similar tricks to what we used to write
down Hamiltonian cycles as an Ising model.

8.1. Minimal Spanning Tree with a Maximal Degree Constraint

The minimal spanning tree problem is the following: given an undirected graph G = (V,E), where each
edge (uv) ∈ E is associated with a cost cuv, what is the tree T ⊆ G, which contains all vertices, such that
the cost of T , defined as

c(T ) ≡
∑

(uv)∈ET

cuv, (58)

is minimized (if such a tree exists)? Without loss of generality, we take cuv > 0 in this subsection (a
positive constant can always be added to each cuv ensure that the smallest value of cuv is strictly positive,
without changing the trees T which solve the problem). We will also add a degree constraint, that each
degree in T be ≤ ∆. This makes the problem NP-hard, with a corresponding NP-complete decision
problem [18].

To solve this problem, we place a binary variable ye on each edge to determine whether or not that
edge is included in T :

ye ≡
{

1 e ∈ ET

0 otherwise
. (59)

We also place a large number of binary variables xv,i on each vertex, and xuv,i, xvu,i on edge (uv) (these
are distinct spins): the number i = 0, 1, . . . , N/2 will be used to keep track of the depth a node in the
tree, and if xuv = 1, it means that u is closer to the root than v, and if xvu = 1 it means that v is closer
to the root. Finally, we use another variable zv,i (i = 1, . . .∆) to count the number of degrees of each
node. We now use energy H = HA+HB, where the terms in HA are used to impose the constraints that:
there is exactly one root to the tree, each vertex has a depth, each bond has a depth, and its two vertices
must be at different heights, the tree is connected (i.e., exactly one edge to a non-root vertex comes from

11One can also encode graph structure by assuming a complete graph (this allows one to neglect the third term in HA),
but choosing the weights of the “non-existent” edges to obey Wuv/∈E → N max(Wuv∈E). As Wuv is not defined if (uv) /∈ E,
these are in fact two identical interpretations.

12 A tree is a graph with no cycles. A cycle is set of vertices v1, . . . , vn with (v1v2), . . . , (vn−1vn), (vnv1) ∈ E. It is easy to
check that if (V,E) is a tree, |E| = |V |− 1.
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•  is a constant. The ground state of this system has , only if we 
have an ordering of vertices where each vertex is only included once, and 
adjacent vertices in the cycle have edges on the graph – i.e., we have a 
Hamiltonian cycle. 

• The traveling salesman also needs to minimize the total traveling distance 
(weight)

A > 0 H = 0

•  should be small enough that it is never favorable to 
violate the constraints of .
B

HA

7. Hamiltonian Cycles

In this section, we describe the solution to the (undirected or directed) Hamiltonian cycles problem,
and subsequently the traveling salesman problem, which for the Ising spin glass formulation, is a trivial
extension.

7.1. Hamiltonian Cycles and Paths

Let G = (V,E), and N = |V |. The graph can either be directed or undirected; our method of solution
will not change. The Hamiltonian path problem is as follows: starting at some node in the graph, can
one travel along an edge, visiting other nodes in the graph, such that one can reach every single node in
the graph without ever returning to the same node twice? The Hamiltonian cycles problem asks that, in
addition, the traveler can return to the starting point from the last node he visits. Hamiltonian cycles is
a generalization of the famous Königsberg bridge problem [24], and is NP-complete [18].

Without loss of generality, let us label the vertices 1, . . . , N , and take the edge set (uv) to be directed
– i.e., the order uv matters. It is trivial to extend to undirected graphs, by just considering a directed
graph with (vu) added to the edge set whenever (uv) is added to the edge set. Our solution will use N2

bits xv,i, where v represents the vertex and i represents its order in a prospective cycle. Our energy will
have three components. The first two things we require are that every vertex can only appear once in a
cycle, and that there must be a jth node in the cycle for each j. Finally, for the nodes in our prospective
ordering, if xu,j and xv,j+1 are both 1, then there should be an energy penalty if (uv) /→ E. Note that
N + 1 should be read as 1, in the expressions below, if we are solving the cycles problem. These are
encoded in the Hamiltonian:

H = A
n
∑

v=1



1−
N
∑

j=1

xv,j





2

+A
n
∑

j=1

(

1−
N
∑

v=1

xv,j

)2

+A
∑

(uv)/∈E

N
∑

j=1

xu,jxv,j+1. (56)

A > 0 is a constant. It is clear that a ground state of this system has H = 0 only if we have an ordering
of vertices where each vertex is only included once, and adjacent vertices in the cycle have edges on the
graph – i.e., we have a Hamiltonian cycle.

To solve the Hamiltonian path problem instead, restrict the last sum over j above from 1 to N − 1;
we do not care about whether or not the first and last nodes are also connected. N2 spins are requied to
solve this problem.

It is straightforward to slightly reduce the size of the state space for the Hamiltonian cycles problem
as follows: it is clear that node 1 must always be included in a Hamiltonian cycle, and without loss of
generality we can set x1,i = δ1,i: this just means that the overall ordering of the cycle is chosen so that
node 1 comes first. This reduces the number of spins to (N − 1)2.

7.2. Traveling Salesman

The traveling salesman problem for a graph G = (V,E), where each edge uv in the graph has a weight
Wuv associated to it, is to find the Hamiltonian cycle such that the sum of the weights of each edge in the
cycle is minimized. Typically, the traveling salesman problem assumes a complete graph, but we have the
technology developed to solve it on a more arbitrary graph. The decision problem (does a path of total
weight ≤ W exist?) is NP-complete [18].

To solve this problem, we use H = HA + HB, with HA the Hamiltonian given for the directed (or
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undirected) Hamiltonian cycles problem. We then simply add

HB = B
∑

(uv)∈E

Wuv

N
∑

j=1

xu,jxv,j+1. (57)

with B small enough that it is never favorable to violate the constraints of HA; one such constraint is
0 < Bmax(Wuv) < A (we assume in complete generality Wuv → 0 for each (uv) ∈ E).11 If the traveling
salesman does not have to return to his starting position, we can restrict the sum over j from 1 to N − 1,
as before. As with Hamiltonian cycles, (N − 1)2 spins are required, as we may fix node 1 to appear first
in the cycle.

8. Tree Problems

The most subtle NP problems to solve with Ising models are problems which require finding connected
tree subgraphs of larger graphs.12 Because determining whether a subgraph is a tree requires global
information about the connectivity of a graph, we will rely on similar tricks to what we used to write
down Hamiltonian cycles as an Ising model.

8.1. Minimal Spanning Tree with a Maximal Degree Constraint

The minimal spanning tree problem is the following: given an undirected graph G = (V,E), where each
edge (uv) ∈ E is associated with a cost cuv, what is the tree T ⊆ G, which contains all vertices, such that
the cost of T , defined as

c(T ) ≡
∑

(uv)∈ET

cuv, (58)

is minimized (if such a tree exists)? Without loss of generality, we take cuv > 0 in this subsection (a
positive constant can always be added to each cuv ensure that the smallest value of cuv is strictly positive,
without changing the trees T which solve the problem). We will also add a degree constraint, that each
degree in T be ≤ ∆. This makes the problem NP-hard, with a corresponding NP-complete decision
problem [18].

To solve this problem, we place a binary variable ye on each edge to determine whether or not that
edge is included in T :

ye ≡
{

1 e ∈ ET

0 otherwise
. (59)

We also place a large number of binary variables xv,i on each vertex, and xuv,i, xvu,i on edge (uv) (these
are distinct spins): the number i = 0, 1, . . . , N/2 will be used to keep track of the depth a node in the
tree, and if xuv = 1, it means that u is closer to the root than v, and if xvu = 1 it means that v is closer
to the root. Finally, we use another variable zv,i (i = 1, . . .∆) to count the number of degrees of each
node. We now use energy H = HA+HB, where the terms in HA are used to impose the constraints that:
there is exactly one root to the tree, each vertex has a depth, each bond has a depth, and its two vertices
must be at different heights, the tree is connected (i.e., exactly one edge to a non-root vertex comes from

11One can also encode graph structure by assuming a complete graph (this allows one to neglect the third term in HA),
but choosing the weights of the “non-existent” edges to obey Wuv/∈E → N max(Wuv∈E). As Wuv is not defined if (uv) /∈ E,
these are in fact two identical interpretations.

12 A tree is a graph with no cycles. A cycle is set of vertices v1, . . . , vn with (v1v2), . . . , (vn−1vn), (vnv1) ∈ E. It is easy to
check that if (V,E) is a tree, |E| = |V |− 1.
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Scott Aaronson, The Limits of Quantum Computers, Scientific American Magazine 298(3), 62-69 (2008)
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•   
•   
•   
•  

Q1: solve for “x”
x2 = 1

Sin[x] = 2

ζ[s] := 
n=1

∞ 1
ns

ζ[2] =
1
12

+
1
22

+
1
32

+
1
42

+
1
52

+⋯ =
π2

6

ζ[-1] = 1 + 2 + 3 + 4 + 5⋯ = ?

x2 = 1

Sin[x] = 2

ζ[s] := 
n=1

∞ 1
ns

ζ[2] =
1
12

+
1
22

+
1
32

+
1
42

+
1
52

+⋯ =
π2

6

ζ[-1] = 1 + 2 + 3 + 4 + 5⋯ = ?

α β = -β α

x y = y x

x, y ∈ ℂ

f[α] = a + b α

for α ∈ * and a, b, f ∈ ℂ

for ψ ∈ *, x, y ∈ ℝ

ψ[x] ψ[y]

Lim
y → x ψ[x] ψ[y] = ?

α α = - α α

α2 = -α2

α2 = 0

α, β ≠ 0

x2 = -1

from Welch Labs

α β = -β α

x y = y x

x, y ∈ ℂ

f[α] = a + b α

for α ∈ * and a, b, f ∈ ℂ

for ψ ∈ *, x, y ∈ ℝ

ψ[x] ψ[y]

Lim
y → x ψ[x] ψ[y] = ?

α α = - α α

α2 = -α2

α2 = 0

α, β ≠ 0

x2 = -1

ζ[-1] = x = 1 + 2 + 3 + 4 + 5 +⋯

x = Ln[-1]

T → Tc

∂

∂θ

2
= 0,  ⅆθ =

∂

∂θ

ψ → ψ′ = expi
σ

2
· θ

 ψ

4 π

F = - k Δx = - k (x - x*)

U (x) =
1

2
k x2

U (x) = U (x*) +
d

d x
U (x*) (x - x*) +

1

2

d2

d x2
U (x*) (x - x*)2 + ⋯

d

d x
U (x*) = 0,

H = p2 c2 + m2 c4

H = -∇2c2 + m2 c4

-
∂2

∂t2
= -∇2c2 + m2 c4

y = x2 + 1

grassmann.nb     3

-3 -2 -1 1 2 3
x

2
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8
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f[x]=x2+1
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USC Study Demonstrates 
Unconditional Exponential Quantum 

Scaling Advantage
• Demonstration of Algorithmic Quantum 

Speedup for an Abelian Hidden Subgroup 
Problem

https://journals.aps.org/prx/pdf/10.1103/PhysRevX.15.021082
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.15.021082
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.15.021082


Ising Model
• Mathematical model for a ferromagnetism in statistical 

mechanics. 
• The energy of spin configuration for a given lattice is 

given by the following classical Hamiltonian  

•   is called an interaction, spin-spin coupling, and  is an external 
magnetic field, interacting with spin . 

• The configuration probability is given by the Boltzmann distribution  

• Quantum Ising model:

Jij hi
si

E(s) = − ∑
i, j

Jij si sj − ∑
i

hi si s = {si}, si ∈ {−1,1}

P(s) =
e−βH(s)

∑s e−βH(s)
, β =

1
kBT

H = − ∑
i, j

Jij σz
i σz

j − ∑
i

hi σz
i



Combinatorial problems in the top quark production

1109.1563, Baringer, Kong, McCaskey, Noonan

1009.2751, Rajaraman, Yu

1109.2201, Kim, Guadagnoli, Park

1706.04995, Debnath, Kim, Kim, Kong, Matchev
2202.05849, Alhazmi, Dong, Huang, Kim, Kong, Shih

Ht, mbl CDF
pt, mbl

MT2, mbl

MT2, mbl, MAOS, hybrid

M2, mbl, hybrid
NN

• Fully hadronic channel: 
 possibilities for 6 

particles in the final state. 
But in reality, 10-20 jets 
appear in the final state, 
leading to -  
possibilities. 

26 = 64

210 220

• -  ambiguity  
(Semi-leptonic and dilepton)
b ℓ


