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• What is a quantum computer?  
• Qubit touchdown game 
• Quantum bits 
• Why quantum computing?  
• Many schools and internship opportunities for 

graduate, undergraduate, high school students and 
teachers 

• Part II 
– $ vs tiger 
– Quantum optimization 

Plan



About me
• PhD in Theoretical Particle Physics, working on new physics 

models (extra dimensions, supersymmetry, dark matter etc) 
• Works on MC simulation and data analysis  
• Use quantum field theory (advanced quantum mechanics) to 

understand how the universe works 
• Machine learning and quantum algorithms and their 

applications 
• Teaching quantum algorithms class since 2022 
• Mentor students (for quantum machine learning projects) via 

google summer of codes program 
• Not an experimentalist   
• No experience with teaching K-12 students



Presentations on quantum 
computing at this workshop

• From Bits to Qubits: A Beginner’s Journey into Quantum 
Computing (Tuesday, KC Kong) 

• Quantum Computing for Machine Learners: A New Frontier 
(Tuesday, KC Kong) 

• Enhancing quantum utility: Simulating large-scale quantum 
spin chains on superconducting quantum computers 
(Tuesday, Talal Chowdhury) 

• Quantum Machine Learning Applications in High Energy 
Physics and Beyond (Wednesday, Konstantin Matchev) 

• More talks on quantum physics 
• Many talks on AI education and outreach program



What is a quantum computer?
• A quantum computer is a new kind of computer 

that’s based on the laws of quantum physics.  
• It can do certain things faster than normal 

computers because it follows a different set of rules.
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What is a quantum computer?
• A quantum computer is a new kind of computer 

that’s based on the laws of quantum physics. It 
can do certain things faster than normal computers 
because it follows a different set of rules.



Eagle 127 qubit  
IBM Quantum computer 
Tens of million dollars  

(depending on service contract)





What is a quantum computer?
• A quantum computer is a new kind of computer 

that’s based on the laws of quantum physics.  
• It can do certain things faster than normal 

computers because it follows a different set of rules.

• Quantum computers are not expected to replace traditional 
computers for everyday use. Quantum computers excel at 
specific types of calculations that are intractable for classical 
computers, but they are not a general-purpose replacement. 
Classical computers will remain essential for most tasks, 
while quantum computers will be used for specialized 
applications.  



Quantum Computing: A Soccer Analogy

• If the rules were changed so that 
players could use their hands, soccer 
would look very different. In some 
cases, it would be faster or easier for 
athletes to use their hands to hold, 
throw, or catch the ball. In other 
cases, however, it would still be better 
to kick the ball. For example, most 
soccer players can kick the ball across 
the field faster than they can throw the 
ball or run with it. So, to get the ball 
across the field as quickly as possible, 
it may still be better to use one’s feet.

By Thomas Wong

• Analogously, the essence of quantum computing is to change the rules so that a 
computer can now use its “hands.” That is, the rules of the game are changed from 
the laws of classical physics to the laws of quantum physics. As a result, a quantum 
computer can solve some problems faster by using its “hands.” For other problems, 
using one’s “feet” is better, so a quantum computer is no faster for these problems.



Need transition form classical to quantum:

bits qubits

gates quantum 

gates 

algorithms 

Classical Quantum

quantum algorithms
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classical gates Quantum gates
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Qubit Touchdown
● A quantum computing board game

– Released Dec. 2019

● Make your own copy – instructions at 
thomaswong.net

● Buy a professionally produced copy print-on-
demand at thegamecrafter.com

● Study involving 107 public high school students in 
Precalculus, AP Statistics, and/or AP Physics 1

– Conducted Dec. 2024

– Submitted Jan. 2025, https://arxiv.org/abs/2501.10449

Touchdown slides are taken from Tom Wong’s presentation at QIST workshop 2025

Made by Prof. Tom Wong 
Creighton University
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● The football can be in one of six positions: 0, 1, +, –, i, or –i.

Taylor Ryan
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Taylor Ryan

● Taylor is trying to get the ball to the “+” endzone, and Ryan is trying to get the ball to the “–” endzone, to score 
touchdowns.

Taylor ScoresRyan Scores
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Taylor Ryan

● They take turns playing cards to move the ball along the lines/arrows.
● Whoever scores the most touchdowns by the time all 52 cards are played wins.



Let’s play Qubit touchdown! 
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Taylor Ryan

● Shuffle the cards. Deal 4 to each player. 
Put the rest in the middle as a “draw 
pile.”

Touchdowns: 0Touchdowns: 0

44 cards

Draw Pile Discard Pile

0 cards
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Taylor Ryan

● Taylor “kicks off” by rolling the binary die 
and placing the football at the result.

Touchdowns: 0Touchdowns: 0

44 cards

Draw Pile Discard Pile

0 cards
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Taylor Ryan

● Ryan’s turn. He wants to get the ball to 
“–” to score, but he doesn’t have an “H.”

Touchdowns: 0Touchdowns: 0

44 cards

Draw Pile Discard Pile

0 cards
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Taylor Ryan

● He plays “√X” and moves the ball to “i.”

Touchdowns: 0Touchdowns: 0

44 cards

Draw Pile Discard Pile

1 card



13

Taylor Ryan

● He draws a new card.

Touchdowns: 0Touchdowns: 0

43 cards

Draw Pile Discard Pile

1 card
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Taylor Ryan

● Taylor’s turn. She wants to move the ball 
towards “+.”

Touchdowns: 0Touchdowns: 0

43 cards

Draw Pile Discard Pile

1 card
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Taylor Ryan

● She plays “X” and moves the ball to “–i.”

Touchdowns: 0Touchdowns: 0

43 cards

Draw Pile Discard Pile

2 cards
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Taylor Ryan

● She draws a new card.

Touchdowns: 0Touchdowns: 0

42 cards

Draw Pile Discard Pile

2 cards



17

Taylor Ryan

● Ryan’s turn.

Touchdowns: 0Touchdowns: 0

42 cards

Draw Pile Discard Pile

2 cards
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Taylor Ryan

● He plays “Z” and moves the ball to “i.”

Touchdowns: 0Touchdowns: 0

42 cards

Draw Pile Discard Pile

3 cards
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Taylor Ryan

● He draws another card.

Touchdowns: 0Touchdowns: 0

41 cards

Draw Pile Discard Pile

3 cards
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Taylor Ryan

● Taylor’s turn.

Touchdowns: 0Touchdowns: 0

41 cards

Draw Pile Discard Pile

3 cards
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Taylor Ryan

● She plays “√X” and moves the ball to “0.”

Touchdowns: 0Touchdowns: 0

41 cards

Draw Pile Discard Pile

4 cards
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Taylor Ryan

● She draws another card.

Touchdowns: 0Touchdowns: 0

40 cards

Draw Pile Discard Pile

4 cards
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Taylor Ryan

● Ryan’s turn.

Touchdowns: 0Touchdowns: 0

40 cards

Draw Pile Discard Pile

4 cards



24

Taylor Ryan

● He plays “I” and leaves the ball unmoved.

Touchdowns: 0Touchdowns: 0

40 cards

Draw Pile Discard Pile

5 cards
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Taylor Ryan

● He draws another card.

Touchdowns: 0Touchdowns: 0

39 cards

Draw Pile Discard Pile

5 cards
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Taylor Ryan

● Taylor’s turn.

Touchdowns: 0Touchdowns: 0

39 cards

Draw Pile Discard Pile

5 cards
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Taylor Ryan

● She plays “H” and moves the ball to “+.” 
Touchdown!

Touchdowns: 0Touchdowns: 1

39 cards

Draw Pile Discard Pile

6 cards
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Taylor Ryan

● She draws another card.

Touchdowns: 0Touchdowns: 1

38 cards

Draw Pile Discard Pile

6 cards



29

Taylor Ryan

● Since she scored a touchdown, she kicks 
off by rolling the binary die.

Touchdowns: 0Touchdowns: 1

38 cards

Draw Pile Discard Pile

6 cards
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Taylor Ryan

● Ryan’s turn. Play continues until all cards 
are used up.

Touchdowns: 0Touchdowns: 1

38 cards

Draw Pile Discard Pile

6 cards
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The Physics of Qubit Touchdown
● The back of every action card is a Bloch sphere.

● Its North and South poles are 0 and 1, the two possible states 
of a bit.

● A quantum bit, or qubit, can be any point on the Bloch sphere. 
Qubit Touchdown uses six of them: 0, 1, +, –, i, –i.

● The positions on the game board correspond to these six 
states, and the football is a qubit moving between these states.

• The back of every action card is a Bloch 
sphere. 

• Its North and South poles are 0 and 1, 
the two possible states of a bit. 

• A quantum bit, or qubit, can be any point 
on the Bloch sphere. Qubit Touchdown 
uses six of them: 0, 1, +, –, i, –i. 

• The positions on the game board 
correspond to these six states, and the 
football is a qubit moving between these 
states.

|0⟩ = (1
0)

|1⟩ = (0
1)
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The Physics of Qubit Touchdown
● Quantum gates change a qubit’s state
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The Physics of Qubit Touchdown
● Quantum gates change a qubit’s state
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The Physics of Qubit Touchdown
● Quantum gates change a qubit’s state
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The Physics of Qubit Touchdown
● Quantum gates change a qubit’s state



Touchdown slides are taken from Tom Wong’s presentation at QIST workshop 2025
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The Physics of Qubit Touchdown
● Although a qubit can be any point on the Bloch sphere, 
measuring its value yields 0 or 1, each with some probability.

● Since +, –, i, –i lie on the equator, they are superpositions, or 
combinations, of half  0 and half 1. Measuring them yields 0 or 
1, each with 50% probability.

● Kicking off after a touchdown corresponds to a measurement.

• Although a qubit can be any point on the 
Bloch sphere, measuring its value yields 
0 or 1, each with some probability. 

• Since +, –, i, –i lie on the equator, they 
are superpositions, or combinations, of 
half 0 and half 1. Measuring them yields 
0 or 1, each with 50% probability. 

• Kicking off after a touchdown 
corresponds to a measurement.
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The Physics of Qubit Touchdown
● Quantum gates change a qubit’s state

• X gate is equivalent to performing a 180-degree (or π radian) 
rotation around the X-axis on the Bloch sphere.  

• However, 360 degree (or 2π radian) rotation introduces a global 
phase shift of -1 to the qubit's state vector. 
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The Physics of Qubit Touchdown
● Quantum gates change a qubit’s state

• X gate is equivalent to performing a 180-degree (or π radian) 
rotation around the X-axis on the Bloch sphere.  

• However, 360 degree (or 2π radian) rotation introduces a global 
phase shift of -1 to the qubit's state vector. 





Why Quantum Computing?
• Cryptography  

– Mathematics: factoring, hidden subgroup program, discrete 
logarithm problem  

• Optimization  
• Search algorithm 
• Quantum Machine Learning 

– Quantum Advantages?  
• Learns better with small # of data 
• Faster convergence 
• Less # of parameters 

• Quantum simulation 
• What are the interesting problems?



Efficient vs inefficient algorithms
• Efficient: computation time scales polynomially with 

problem’s size.  
– (Ex) search :  

• n=1000:  t = 1 sec  
• n=1050:  t = 1.2 sec 

• Inefficient: computation time scales exponentially.  
– (Ex) factoring  

• n=1000: t = 1 sec  
• n=1001: t = 2 sec 
• n=1006: t = 1 min  
• n=1012: t = 1 hour 
• n=1050: t ~ 3.3 million years

n4

2n

( 1050
1000 )

4

≈ 1.2

( 21006

21000 ) = 26 = 64

( 21050

21000 ) = 250



Assume we have a computer 
with clock speed of 4 GHz, 
which means it can execute 4 
BILLION cycles per second.

2nn

RAM = Random Access Memory 
There are 8 bits in one byte.



Need transition form classical to quantum:

bits qubits

gates quantum 

gates 

algorithms 

Classical Quantum

quantum algorithms
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Quantum Bits (Qubits)

| + ⟩

| − ⟩

|0⟩

|1⟩

| + i⟩

| − i⟩

49

Quantum Bits

● Qubit – Quantum bit

● Superposition – Combination of 

|0  and |1⟩ ⟩

● Amplitude – CoeAcient in front of 

|0  and |1⟩ ⟩

● Measurement – Get |0  or |1  ⟩ ⟩

with probability = |amplitude|2

 Qubit collapses to |0  or |1⟩ ⟩

● Normalized – Total probability is 1
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Quantum Bits

https://www.epiqc.cs.uchicago.edu/zines-superposition

| + ⟩

|0⟩ |1⟩



Quantum Bits (Qubits)
• Qubit - quantum bit 
• Superposition - combination of 0 and 1 

(  and ) 
• Amplitude - coefficient in front of 0 and 

1 (  and ) 

• Measurement - get  or  with 
probability =  

– Qubit collapses to  or  
• Normalized - total probability is 1. 

• Entanglement - outcome two qubits are 
intertwined. 

|0⟩ |1⟩

|0⟩ |1⟩
|0⟩ |1⟩

|amplitude |2

|0⟩ |1⟩
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Quantum Bits

● Qubit – Quantum bit

● Superposition – Combination of 

|0  and |1⟩ ⟩

● Amplitude – CoeAcient in front of 

|0  and |1⟩ ⟩

● Measurement – Get |0  or |1  ⟩ ⟩

with probability = |amplitude|2

 Qubit collapses to |0  or |1⟩ ⟩

● Normalized – Total probability is 1

| + ⟩

| − ⟩

|0⟩

|1⟩

| + i⟩

| − i⟩



Our computers are great and work fine for us. 
Why do we need quantum computers and 

what can we do with them?

Q IS FOR QUANTUM, Terry Rudolph 

Great introduction to quantum mechanics without using math

https://www.qisforquantum.org




XXXXX1 XXXX1X XXX1XX

XX1XXX X1XXXX 1XXXXX



Suppose your number was 43

In base 2: 101011 



Suppose your number was 43

In base 2: 101011 = 100000 + 001000 + 000010 + 000001



Suppose your number was 43

In base 2:

             =      32    +      8      +       2     +     1In base 10:

101011 = 100000 + 001000 + 000010 + 000001

=     43



Is there a way to find out the answer 
by asking less than 6 questions?



Bernstein-Vazirani Algorithm
• A n-bit function , which outputs a single bit, is 

guaranteed to be of the form , where s is an unknown n-bit 

string and . Find the unknown 

string . 

• Best classical algorithm uses  calls to . Each 
query gives one bit of information of  (because  outputs one bit).

f : {0,1}⊗n ⟶ {0,1}
fs(x) = x ⋅ s

x ⋅ s = x0s0 + ⋯ + xn−1sn−1 =
n−1

∑
i=0

xisi (mod 2)

s = (s0s1⋯sn−1)

𝒪(n) fs(x) = x ⋅ s mod 2
s f

• How do we find  with less than  queries?  Use superposition (over all 
possible input bit strings)

s n →



Inner Product
⃗a = (a1, a2, ⋯, a1024)

b⃗ = (b1, b2, ⋯, b1024)

⃗a ⋅ b⃗ = a1b1 + a2b2 + ⋯ + a1024b1024

How many operations  

= 1024 multiplications + 1023 additions

Example
Inner Product Calculation

• Let  be two vectors. How to compute the magnitude of the inner product  ? 

• Digital: 

 multiplications & additions 

Decompose multiplications & additions as NAND gate 

• Quantum: 

Run the following circuit with  qubits and  gates 

 

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

|a⟩

|b⟩

|a⟩ : 10 qubits are needed to embed  ⃗a = (a1, a2, ⋯, a1024)

|b⟩ : 10 qubits are needed to embed  b⃗ = (b1, b2, ⋯, b1024)

|0⟩ : 1 additional qubit as a registry

12 operations are needed.210 = 1024



⃗a = ( 1

2
, 1

2 )
b⃗ = (1 ,0)

⃗a ⋅ b⃗ =
1

2
⋅ 1 +

1

2
⋅ 0

IBM Quantum Composer H =
1

2 (1 1
1 −1)

| ⃗a ⋅ b⃗ |2 = 0.5

|a⟩ =
1

2 ( |0⟩ + |1⟩) = H |0⟩

|b⟩ = (1
0) = |0⟩

⟨a |b⟩ =
1

2
⋅ 1 +

1

2
⋅ 0

=
1

2
≈ 0.707

|⟨a |b⟩ |2 = P(1) − P(0) = 0.5

=
1

2
≈ 0.707

Using vector notation Using Dirac bracket notation

https://quantum.ibm.com/composer/files/856ba411f726c35d319bac6f603c9eb6f32877be3b90af87460ad50f59e555cc


The First Wave of Quantum 
Machine Learning?The First Wave of Quantum Machine Learning

6

Long-term: Quantum Linear Algebra 

Exponential or polynomial speed-up in 

‣ Support vector machine 

‣ Principle component analysis 

‣ Bayesian methods 

‣ …

Ax = b Complexity of inversion of a regular matrix=  
Complexity of inversion of a sparse matrix=

O(N3)
O(N )



DFT:  
FFT:  
QFT: 

N2

N log2 N
(log2 N )2





A few popular tools for quantum 
simulation

• Qiskit (IBM)


• IBM Quantum Composer


• IBM Quantum Platform


• PennyLane and Strawberry Fields (Xanadu)


• TensorFlowQuantum (google)


• CUDA Quantum (NVIDIA)


• TensorCircuit

https://www.ibm.com/quantum/qiskit
https://quantum-computing.ibm.com/composer
https://quantum-computing.ibm.com/
https://pennylane.ai
https://strawberryfields.ai
https://www.tensorflow.org/quantum
https://developer.nvidia.com/cuda-q
https://tensorcircuit.readthedocs.io/en/latest/


IBM has been following a quantum-computing road map 
that roughly doubles the number of qubits every year.

where we are 

3 flamingo (462 qubits) 
processors with build-in 

quantum communication link





Quantum computers are hard to build
• Qubits, unlike classical bits, need to interact strongly among themselves to 

form entangled states, which in turn form the basis for computation in 
quantum computers. But to achieve this experimentally is incredibly hard.



Quantum Hardware RoadmapQuantum Hardware Roadmap
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Is there a “Moore's law” for quantum computing?
• https://arxiv.org/pdf/2303.15547
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Breaking limitation of quantum annealer in solving
optimization problems under constraints

Masayuki Ohzeki1,2,3*

1Graduate School of Information Science, Tohoku University, Sendai, Japan
2Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
3Sigma-i Co. Ltd., Tokyo, Japan
*mohzeki@tohoku.ac.jp

ABSTRACT

Quantum annealing is a generic solver for optimization problems that uses fictitious quantum fluctuation. The most ground-
breaking progress in the research field of quantum annealing is its hardware implementation, i.e., the so-called quantum
annealer, using artificial spins. However, the connectivity between the artificial spins is sparse and limited on a special net-
work known as the chimera graph. Several embedding techniques have been proposed, but the number of logical spins, which
represents the optimization problems to be solved, is drastically reduced. In particular, an optimization problem including fully
or even partly connected spins suffers from low embeddable size on the chimera graph. In the present study, we propose an
alternative approach to solve a large-scale optimization problem on the chimera graph via a well-known method in statistical
mechanics called the Hubbard-Stratonovich transformation or its variants. The proposed method can be used to deal with
a fully connected Ising model without embedding on the chimera graph and leads to nontrivial results of the optimization
problem. We tested the proposed method with a number of partition problems involving solving linear equations and the traffic
flow optimization problem in Sendai and Kyoto cities in Japan.

Introduction

Quantum annealing (QA) is a generic algorithm aimed at solving optimization problems by exploiting the quantum tunneling
effect. The scheme was originally proposed as an algorithm for numerical computation1 inspired by simulated annealing
(SA)2 and exchange Monte-Carlo simulation3. Moreover, its experimental realization has been accomplished recently and
attracted significant attention. Quantum annealing has the advantage of solving an optimization problem formulated with
discrete variables. A well-known example is searching for the ground state of the spin-glass model, which corresponds to
various types of optimization problems, such as the traveling salesman problem and satisfiability problem4–6. In QA, we
formulate a platform to solve the optimization problem, the Ising model, and implement it in the time-dependent Hamiltonian.
The Hamiltonian takes the form of the formulated Ising model at the final time. The initial Hamiltonian is governed by the
“driver” Hamiltonian only with quantum fluctuation. The frequently used driver Hamiltonian consists of the transverse field,
which generates the superposition of the up and down spins. The first stage of QA is initialized in the trivial ground state of the
driver Hamiltonian. The quantum effect will be gradually turned off, and will end so that only the classical Hamiltonian with a
nontrivial ground state remains. When the transverse field changes sufficiently slowly, the quantum adiabatic theorem ensures
that we can find the nontrivial ground state at the end of QA7–9. Numerous reports have stated that QA outperforms SA10–12.
The performance possibly stems from the quantum tunneling effect penetrating the valley of the potential energy. The protocol
of QA is realized in an actual quantum device using contemporary technology, namely, the quantum annealer13–16. The output
from the current version of the quantum annealer is not always the spin configuration in the ground state, due to the limitation
of the device and environmental effects17. Therefore, several protocols based on QA do not keep the system in the ground
state following the condition on the adiabatic quantum computation. Rather, they employ a nonadiabatic counterpart18–21

and the thermal effect22. The quantum annealer has been tested for numerous applications, such as portfolio optimization23,
protein folding24, the molecular similarity problem25, computational biology26, job-shop scheduling27, traffic optimization28,
election forecasting29, machine learning30–35, and automated guided vehicles in plants36.

In addition, studies on implementing the quantum annealer to solve various problems have been performed31–33,37–39. The
potential of QA might be boosted by the nontrivial quantum fluctuation, referred to as the nonstoquastic Hamiltonian, for
which efficient classical simulation is intractable40–44.

The current version of the quantum annealer, the D-Wave 2000Q, employs the chimera graph, on which physical qubits are
set. The connection between the physical qubits is sparse and limited on the chimera graph. Several embedding techniques
are thus proposed, but the number of logical qubits, which represent the optimization problems to be solved, is drastically
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driver Hamiltonian. The quantum effect will be gradually turned off, and will end so that only the classical Hamiltonian with a
nontrivial ground state remains. When the transverse field changes sufficiently slowly, the quantum adiabatic theorem ensures
that we can find the nontrivial ground state at the end of QA7–9. Numerous reports have stated that QA outperforms SA10–12.
The performance possibly stems from the quantum tunneling effect penetrating the valley of the potential energy. The protocol
of QA is realized in an actual quantum device using contemporary technology, namely, the quantum annealer13–16. The output
from the current version of the quantum annealer is not always the spin configuration in the ground state, due to the limitation
of the device and environmental effects17. Therefore, several protocols based on QA do not keep the system in the ground
state following the condition on the adiabatic quantum computation. Rather, they employ a nonadiabatic counterpart18–21

and the thermal effect22. The quantum annealer has been tested for numerous applications, such as portfolio optimization23,
protein folding24, the molecular similarity problem25, computational biology26, job-shop scheduling27, traffic optimization28,
election forecasting29, machine learning30–35, and automated guided vehicles in plants36.

In addition, studies on implementing the quantum annealer to solve various problems have been performed31–33,37–39. The
potential of QA might be boosted by the nontrivial quantum fluctuation, referred to as the nonstoquastic Hamiltonian, for
which efficient classical simulation is intractable40–44.

The current version of the quantum annealer, the D-Wave 2000Q, employs the chimera graph, on which physical qubits are
set. The connection between the physical qubits is sparse and limited on the chimera graph. Several embedding techniques
are thus proposed, but the number of logical qubits, which represent the optimization problems to be solved, is drastically

2002.05298 
Nature, Scientific Reports volume  10, Article number: 3126 (2020) 

Supply chain logistics  
Route Optimization  
Portfolio management  
Nurse scheduling problem 
Image recognition  
Remote sensing imagery 
Classifier optimization

Drug discovery 
Material science 
Seismic inversion 
Quantum simulation 
Financial modeling 
Cryptography  
Better batteries  
Cleaner fertilization 
Electronic material discovery

https://www.nature.com/srep
https://arxiv.org/pdf/2205.04435
https://arxiv.org/pdf/2412.02720
https://arxiv.org/pdf/2012.01121
https://www.nature.com/articles/s41598-019-49172-3
https://arxiv.org/abs/2103.08373


$ vs Tiger
• Teaching quantum information science to high-school 

and early undergraduate students by Sophia Economou, 
Terry Rudolph, Edwin Barnes, 2005.07874

• You encounter two doors:  
Money behind at least one 
door 

• Tiger might be lurking 
behind one door  

https://arxiv.org/pdf/2005.07874
https://arxiv.org/pdf/2005.07874




$ vs Tiger
• The button on the left opens both doors  
• YOU WANT TO BE SURE THERE’S NO TIGER 

BEHIND EITHER DOOR BEFORE YOU PUSH THE 
“OPEN” BUTTON  

• The device in the middle 
will tell you if there is a 
tiger behind the door that 
you ask about – but you 
only get to use it once  



• List the three different scenarios for what’s 
behind the doors:  

$ vs Tiger



• List the three different scenarios for what’s behind the doors:  

$ vs Tiger



• Make a truth table for the tiger box for each of the scenarios

$ vs Tiger



• Make a truth table for the tiger box for each of the scenarios

$ vs Tiger

1 = no tiger 
0 = tiger



• What gate(s) correspond to the truth table for each scenario?  

$ vs Tiger

1 = no tiger 
0 = tiger



• What gate(s) correspond to the truth table for each scenario?  

$ vs Tiger

1 = no tiger 
0 = tiger

Conditional NOT Identity
Both are possible.



• Challenge:  We can’t change the tiger box, but can we add gates 
before and/or after it such that we can determine if there is a tiger 
somewhere by ONLY USING THE TIGER BOX ONCE?  

• We’re trying to prove that quantum computing let’s us do things that 
are impossible with classical computing. Therefore, consider adding 
some quantum gates.  

• Hint 1: We’d like to query both doors with one push of a button, so 
maybe we should put the “Door” bit into a superposition.   

• Hint 2: We definitely don’t want a superposition output, so we maybe 
we should add a second H to the “Door” bit.   

• Hint 3: Our inputs will always be 11 for the solution.  	  
• Hint 4:  We want the output to be 11 for no tiger and 10 for tiger.  

$ vs Tiger



$ vs Tiger

• H changes 0 into + state. 
• H changes 1 into - state.



• What does this tell us? 
– We can solve (some) unsolvable problems with quantum 

computing 
– We can determine IF there is a tiger, but not WHICH 

DOOR  

$ vs Tiger



• Many schools and internship opportunities for 
graduate, undergraduate and high school students! 

• REU program  
• Workshops and conferences 

• Involvement with National labs and government 
agencies 
– NASA, DoD, DOE, NSF, many private foundations



Taken from Megan Ivory’s presentation at QIST workshop 2025



Taken from Megan Ivory’s presentation at QIST workshop 2025
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Quantum Ideas Summer
School
The Quantum Ideas Summer School is open to

Undergraduates, Graduate Students, and Industry

participants. Support for Undergraduate and Graduate

students is funded by the National Science Foundation

(award #PHY-1818914).

2024 Session
Lecture Notes (Session Recordings coming soon)

Day 1 | Quantum Information Basics

Part 1: Quantum Information Basics - Aram Harrow

Part 1 Session recording

Part 2: Quantum Information Basics- Akimasa

Miyake

Part 2 Session recording

Day 2 | Neutral Atom Quantum Computing + Quantum

Simulation of Everything

Part 1: Neutral Atom Quantum Computing - Jacob

Covey

Part 1 Session recording

Part 2: Quantum Simulation of Everything - Peter

Love

Undergraduate and

Graduate student support

is funded by the National

Science Foundation (award

#PHY-1818914) and

outlined in Participant

Travel Guidelines.

For more details, contact

the STAQ Administrator.

 

2023 Session

Lecture Notes and

Session Recordings

Day 1 | Quantum

Information Basics

Day 2 | Ions and QECC

(Day 3 - Offsite

programming. No lectures)

Day 4 | Superconductors

and Algorithms

Day 5 | Quantum

Architecture and

Optimization

 

2022 Session

Duke 

Since 2019

For undergraduate and 
graduate students 



Not sure whether 
there will a 

school in 2025



LANL

For undergraduate and 
graduate students 



The 2025 U.S. Quantum 
Information Science Summer 
School (USQIS) will be 
hosted by the Quantum 
Science Accelerator at 
Lawrence Berkeley National 
Laboratory. Dates and 
application information TBA.

ORNL

FNAL

For undergraduate and 
graduate students 



 

 

 

 

C2QA QIS 102: Applied Quantum Computing Summer School 
June 10 – 28, 2024 
 

“There is a distinct need to teach students core scientific computing, 
and then stitch quantum computing concepts to enhance intuition and skills.” 

David Biersach 
Senior Technology Architect 
Brookhaven National Laboratory 
 

Brookhaven National Laboratory offers a three-week virtual workshop to introduce rising college juniors, seniors, 
and recent college graduates to the exciting world of quantum information science (QIS). Led by Dr. David 
Biersach, through a series of demonstrations and hands-on programming labs, students will learn how quantum 
algorithms, when applied to specific problem domains, can outperform classical computers. Students will learn IBM 
Qiskit, a world-class software package for working with quantum computers at the level of pulses, circuits, and 
application modules. Students will download and install the 100% open-source courseware and development tools 
on their personal computers, which they will use during the program. Accepted students will be provided with a 
weekly stipend of $500 and those who successfully complete the workshop will be presented with a certificate from 
Brookhaven National Laboratory attesting to their skills in Applied Quantum Computing. The workshop will run 
each day, Monday – Friday, for three weeks from June 10 – 28, 2024 from 10:00 AM – 6:00 PM ET (two 1-hour 
breaks) and be conducted entirely via Zoom web conferencing. 
 
STIPEND: $500 per week 
 
ELIGIBILITY:  Minimum 18 years of age. Must be a U.S. citizen or Legal Permanent Resident. Must successfully 
complete the Brookhaven National Laboratory Guest Registration process. 

 
PREREQUISETES: Students must have completed all (6) courses listed below prior to program commencement on 
Jun 10, 2024 with a grade B (3.0 GPA) or better.  

 
• Computer Programming: A course covering an “Introduction to Programming” and a course covering “Data 

Structure & Algorithms”. 
 

• Math: A course covering “Linear Algebra with Vectors & Matrices” and a course covering “Differential 
Equations”. 

 
• Physics: A course covering “Physics Using Calculus including Classical Mechanics & Electromagnetism” and a 

course covering either “Thermodynamics” or “Mathematical Methods in Physics”. 
 

In addition to the above, only applicants who are rising college juniors or seniors (or recent college graduates) 
and who will have completed the spring 2024 semester by June 10, 2024 will be considered. 

QIS 100: Applied Quantum 
Computing Virtual 
Program, June 2025

Application Period Opens February 2025

Virginia Tech & C2QA QIS 
& Engineering High 
School Level Virtual 
Program, August 2025

Application Period Opens March 2025



Google Summer of Code program is intended for advanced 
students who are already familiar with AI or quantum computing.



The Adjoint Is All You Need:
Characterizing Barren Plateaus in Quantum Ansätze

Enrico Fontana,1, 2 Dylan Herman,1, → Shouvanik Chakrabarti,1 Niraj Kumar,1
Romina Yalovetzky,1 Jamie Heredge,1, 3 Shree Hari Sureshbabu,1 and Marco Pistoia1

1
Global Technology Applied Research, JPMorgan Chase

2
Computer and Information Sciences, University of Strathclyde

3
School of Physics, The University of Melbourne

Using tools from the representation theory of compact Lie groups, we formulate a theory of
Barren Plateaus (BPs) for parameterized quantum circuits whose observables lie in their dynamical
Lie algebra (DLA), a setting that we term Lie algebra Supported Ansatz (LASA). A large variety of
commonly used ansätze such as the Hamiltonian Variational Ansatz, Quantum Alternating Operator
Ansatz, and many equivariant quantum neural networks are LASAs. In particular, our theory
provides, for the first time, the ability to compute the variance of the gradient of the cost function of
the quantum compound ansatz. We rigorously prove that, for LASA, the variance of the gradient of
the cost function, for a 2-design of the dynamical Lie group, scales inversely with the dimension of the
DLA, which agrees with existing numerical observations. In addition, to motivate the applicability
of our results for 2-designs to practical settings, we show that rapid mixing occurs for LASAs with
polynomial DLA. Lastly, we include potential extensions for handling cases when the observable lies
outside of the DLA and the implications of our results.

1. INTRODUCTION

Variational quantum algorithms (VQAs) are a popular
class of quantum computing heuristics due to their low
circuit cost and ability to be trained in a hybrid quantum-
classical fashion [1]. The community has identified a va-
riety of potential applications for VQAs in the areas of
optimization [2–7] and machine learning [8–12]. Unfor-
tunately, the optimization of VQAs can be a computa-
tionally challenging task due to (1) exponentially many
parameters being required to ensure convergence [13–17],
and (2) exponentially many samples being required to es-
timate gradients, known as the barren plateau (BP) prob-
lem [18–21]. In some cases, it has been observed numer-
ically that both of these obstacles to VQA optimization
can be mitigated when the chosen parameterized quan-
tum circuit (PQC) obeys certain symmetries [14, 22].
The symmetries of the ansatz cause its action, in either
the Schrödinger or Heisenberg pictures, to break into in-
variant subspaces. However, there have only been a few
cases in which potentially useful symmetries, mostly in
the Schrödinger picture, have been identified, e.g. per-
mutation invariance [23].

The existing theoretical results on the trainability and
convergence of ansätze with symmetries have been re-
stricted to the Schrödinger picture and a setting called
subspace controllable [14, 18, 22, 23]. Subspace control-
lability occurs when the circuit can express any unitary
transformation between states in an invariant subspace
and it has been observed that it results in training land-
scapes that are essentially trap-free [24, 25]. In addition,
if the invariant subspaces have small dimension, i.e. scale
polynomially in system size, it can be easily shown that

→ dylan.a.herman@jpmorgan.com

BPs are not present for subspace controllable PQCs.
These results however fail in the uncontrollable setting,

where the circuit is limited to expressing a subgroup of
the unitary group in the invariant subspace. With re-
spect to the BPs problem, existing work has observed a
desirable feature of subspace uncontrollable circuits [22].
In this setting, it appears that the trainability of the
ansatz depends on the dimension of the dynamical Lie

algebra (DLA), which holds almost trivially in the sub-
space controllable setting since the DLA dimension grows
with the square of the subspace dimension. However, ex-
isting work has only provided evidence of this connec-
tion to the DLA dimension numerically in the uncon-
trollable setting [22]. There are cases where, for an un-
controllable PQCs, the dimension of the e!ective DLA
only grows polynomially in the system size, while the in-
variant subspace dimension where the initial state lies is
exponentially growing, such as the quantum compound
ansatz [26, 27]. Note that the e!ective DLA is the restric-
tion of the action of the DLA to an invariant subspace.
Thus, this connection between the DLA dimension and
BPs has remained unproven in the general setting.

In this work, using a simple but powerful observation
regarding the adjoint representation and the representa-
tion theory of compact Lie groups, we prove that for a
general class of PQCs that the variance of the gradient
of the cost function does fall inversely with the dimen-
sion of the e!ective DLA for 2-designs of the dynami-
cal Lie group. As we will show, the Heisenberg picture
and the symmetries of the circuit’s action on the observ-
able are more suitable for explaining this phenomenon.
This will lead to intuitive and commonplace conditions
on the observable that are su"cient for this connection to
hold. To show the validity of the 2-design assumption in
practice, we show that fast mixing occurs for DLAs with
polynomial dimension, and we experimentally verify our
formulae for the quantum compound ansatz.

ar
X

iv
:2

30
9.

07
90

2v
4 

 [q
ua

nt
-p

h]
  6

 M
ar

 2
02

4

Nature Commun. 15 (2024) 1, 7171 
2309.07902



INTERNSHIP  
Research Technologies Summer Associate Program 

(Applications currently closed)





Summary
• Quantum computing uses the weirdness of quantum physics (like 

superposition and entanglement) to solve problems in new ways.  
• It's not science fiction — real quantum computers exist today and 

are already solving small-scale problems.  
• This field combines physics, math, computer science, and 

engineering — so whatever you’re into, you can be part of it. 
• Quantum computers could revolutionize many areas such as 

security, medicine, materials, AI, climate modeling, and more.  
• It’s a young field — we need your ideas, your questions, and your 

creativity.  
• What You Can Do Now:   

– Get curious: try a quantum simulator (like IBM Quantum Experience). 
– Learn linear algebra and probability — they’re the language of quantum.  
– Ask "what if?" — because today's science fiction is tomorrow’s 

technology.





•   
•   
•   
•  

Q: solve for “x”
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Example
Inner Product Calculation

• Let  be two vectors. How to compute the magnitude of the inner product  ? 

• Digital: 

 multiplications & additions 

Decompose multiplications & additions as NAND gate 

• Quantum: 

Run the following circuit with  qubits and  gates 

 

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…
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Inner product
• Let ,  be two  dimensional vectors. How to compute the 

magnitude of the inner product ? 
• Classical  

–  multiplications and additions 
– Decompose multiplications and additions as NAND gates 

• Quantum 

– Run the following circuits with  qubits and  gates 

–

|ψ⟩ |ϕ⟩ ∈ ℂ2n N = 2n

|⟨ϕ |ψ⟩ |2

N = 2n

2n + 1 n + 2
Prob(0) − Prob(1) = |⟨ϕ |ψ⟩ |2

|ψ⟩ = (ψ1, ⋯, ψN)
|ϕ⟩ = (ϕ1, ⋯, ϕN)

⟨ϕ |ψ⟩ =
N

∑
i=1

ϕ*i ψi
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Experimental realization 

Experimental Quantum Computing to Solve Systems of Linear Equations

X.-D. Cai,1 C. Weedbrook,2 Z.-E. Su,1 M.-C. Chen,1 Mile Gu,3,4 M.-J. Zhu,1 Li Li,1,* Nai-Le Liu,1,†

Chao-Yang Lu,1,‡ and Jian-Wei Pan1

1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

2Center for Quantum Information and Quantum Control, Department of Electrical and Computer Engineering,
and Department of Physics, University of Toronto, Toronto M5S 3G4, Canada

3Centre for Quantum Technologies, National University of Singapore, Singapore 117543
4Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China

(Received 6 March 2013; published 6 June 2013)

Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly

growing data sets, such a task can be intractable for classical computers, as the best known classical

algorithms require a time proportional to the number of variables N. A recently proposed quantum

algorithm shows that quantum computers could solve linear systems in a time scale of order logðNÞ, giving
an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm,

solving 2# 2 linear equations for various input vectors on a quantum computer. We use four quantum bits

and four controlled logic gates to implement every subroutine required, demonstrating the working

principle of this algorithm.

DOI: 10.1103/PhysRevLett.110.230501 PACS numbers: 03.67.Ac, 03.65.Ud, 03.67.Lx, 42.50.$p

The problem of solving a system of linear equations
plays a central role in diverse fields such as signal process-
ing, economics, computer science, and physics. Such sys-
tems often involve tera or even petabytes of data, and thus
the number of variables N, is exceedingly large. However,
the best known algorithms for solving a system of N linear
equations on classical computers requires a time complex-
ity on the order of N, posing a formidable challenge.

Harnessing the superposition principle of quantum
mechanics, quantum computers [1,2] promise to provide
exponential speedup over their classical counterparts for
certain tasks. Notable examples include quantum simula-
tion [3,4] and Shor’s quantum factoring algorithm [5],
which have driven the field of quantum information over
the past two decades as well as generating significant
interest in quantum technologies that have enabled experi-
mental demonstrations of the quantum algorithms in differ-
ent physical systems [6–10].

Recently, Harrow et al. [11] proposed another powerful
application of quantum computing for the very practical
problem of solving systems of linear equations. They
showed that a quantum computer can solve a system of
linear equations exponentially faster than a classical com-
puter in situations that we are only interested in expectation
values of an operator associated with the solution rather
than the full solution. A quantum algorithm has been
designed such that the value of this property may be
estimated to any fixed desired accuracy within Oð logðNÞÞ
time, making it one of the most promising applications of
quantum computers.

In this article, we report an experimental demonstration
of the simplest meaningful instance of this algorithm, that

is, solving 2# 2 linear equations for various input vectors.
The quantum circuit is optimized and compiled into a
linear optical network with four photonic quantum bits
(qubits) and four controlled logic gates, which is used to
coherently implement every subroutine for this algorithm.
For various input vectors, the quantum computer gives
solutions for the linear equations with reasonably high
precision, ranging from fidelities of 0.825 to 0.993.
The problem of solving linear equations can be summa-

rized as follows: We aim to solve A~x ¼ ~b for ~x, when

given a N # N Hermitian matrix A and a vector ~b. To

adapt this problem to quantum processing, ~x and ~b are

scaled to unit length (i.e., k ~xk ¼ k ~bk ¼ 1). Thus, a vector
~b can be represented by a quantum state jbi ¼ P

ibijii on
Oð logðNÞÞ qubits where jii denotes the computational
basis. The desired solution ~x can then be encoded within
the quantum state as

jxi ¼ cA$1jbi; c$1 ¼ kA$1jbik: (1)

The quantum algorithm devised in Ref. [11] was designed
to synthesize jxi [see Fig. 1(a)]. The quantum algorithm
involves the following three subsystems: a single ancilla
qubit initialized in j0i, a register of n qubits of working
memory initialized in j0i&n, and an input state initialized in
jbi. The input state jbi can be expanded in the basis of juji
as jbi ¼ PN

j¼1 !jjuji, where juji is the eigenstate of A,

and !j ¼ hujjbi. Execution of the algorithm can be
decomposed into the following three subroutines: (1) phase
estimation, (2) controlled rotation, and (3) inverse phase
estimation.

PRL 110, 230501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
7 JUNE 2013

0031-9007=13=110(23)=230501(5) 230501-1 ! 2013 American Physical Society

"A two-qubit photonic quantum processor and its application to solving systems of linear equations". Scientific Reports. 4: 6115.  
“Experimental realization of quantum algorithm for solving linear systems of equations". Physical Review A. 89 (2): 022313 

Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing, Phys.Rev.Lett. 122 (2019) 6, 060504  
===> "Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing". Phys. Rev. A 99, 
012320.    8 dimensional linear equation.

https://www.nature.com/articles/srep06115
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.89.022313
https://arxiv.org/pdf/1805.10549
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.99.012320
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.99.012320


USC Study Demonstrates 
Unconditional Exponential Quantum 

Scaling Advantage
• Demonstration of Algorithmic Quantum 

Speedup for an Abelian Hidden Subgroup 
Problem
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The Physics of Qubit Touchdown
● Quantum gates change a qubit’s state
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