

Workshop for AI-Powered Materials Discovery at Great Plains June 22-25, 2025 **University of South Dakota**

Machine learning applications at high-energy particle colliders to probe triple Higgs coupling

Balbeer Singh

Department of Physics University of South Dakota

In collaboration with: Doojin Kim

arXiv:22XX.XXXXX

• A quantum field theory that describes electromagnetic, weak and strong interactions

> Gauge group : $SU(3)_C \times SU(2)_L \times U(1)_Y$ QCD Electroweak

- Particle content : Quarks (spin-1/2), leptons (spin-1/2) and gauge bosons (spin-1 and o)
- Successful in predicting masses of W, Z, leptons, quarks (bare mass)
- Most parameters measured with high accuracy except triple-Higgs coupling

Triple Higgs coupling

• First interaction term in Higgs potential

$$V(h) = -\mu^2 \phi^2 + \lambda \phi^4 \equiv \frac{1}{2} m_h^2 h^2 + \lambda_{hhh} h^3 + \lambda_{hhhh} h^4$$

Triple Higgs coupling Quartic self coupling

- 1. Important to complete SM
- 2. Important to constraint any physics beyond SM
- 3. Determines electroweakphase transition in earlyuniverse

$$m_h = 125 \, {\rm G}$$

$$\lambda_{hhh} = \lambda_{hhhh}$$

$$\lambda_{hhhh} = \frac{m_h^2}{2v^2}$$

Experimentally accessible through double Higgs and single Higgs production at high-energy particle colliders such as proton-proton (pp), electron-positron

Hadron colliders

• Direct probe for triple Higgs coupling is $gg \rightarrow HH$

- Destructive interference leads to extremely small cross-section
- High beam energy is required
- Indirect channel: λ_{3H} enters at NLO

1702.01737 1607.04251 1702.07678

HL-LHC

$$-0.8 < \frac{\lambda_{3H}}{\lambda_{SM}} < 7.7$$

ATL-PHYS-PUB-2017-001

Electron positron colliders

• Higgs associated production is sensitive to λ_{3H} at NLO in e^+e^- collider: Indirect measurement

$$\lambda_{3H} = \lambda_{SM}(1)$$

0.02

0.01

0.00

-0.01

-0.02

- With HZZ (δ_7), combination of δ_7 and δ_h can be constrained
- δcz • Precision measurements at different c.o.m energies can be useful to constrain the combination of δ_h and O_Z

Sensitivity can be improved if δ_{z} can be removed somehow!

1312.3322

 $+\delta_h$) δ_h Parameterises deviation to self coupling Can constrain δ_h in a model dependent way \longrightarrow FCC-ee at $\sqrt{s} = 240$ GeV by 28% $\mathscr{L} \sim 10 \text{ ab}^{-1}$ 1809.10041

Trilinear coupling at $e^+e^- \rightarrow ZH$

- Fractional change in cross-section and 1σ limit on κ
- Polarized beam can improve sensitivity

• For $P_{e^-} = -0.8$ and $P_{e^+} = 0.3$ the accuracy to measure κ is about 57 %

2304.11573 1805.03417

$\mathscr{L} \sim 2 \text{ ab}^{-1}$

\sqrt{s}	P_L	\bar{P}_L	σ_L (fb)	$\frac{\delta\sigma}{\sigma}/\kappa$	$\kappa_{ m lim}~(\%)$
250	0	0	242	1.278	70.0
	-0.8	0	288	1.278	64.2
	-0.8	+0.3	364	1.278	57.2
350	0	0	129	0.284	315
	-0.8	0	153	0.284	289
	-0.8	+0.3	193	0.284	257
500	0	0	56.9	-0.203	-440
	-0.8	0	67.6	-0.203	-403
	-0.8	+0.3	85.3	-0.203	-359
1000	0	0	12.7	-0.433	-206
	-0.8	0	15.1	-0.433	-189
	-0.8	+0.3	19.1	-0.433	-169

Z polarization for triple Higgs

• Angular asymmetries of decay products

- heta and ϕ are polar and azimuthal angles of final state fermion in the rest frame of V
- Polarization parameters can be extracted from polarized matrix elements

2109.11134

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_f} \propto \sum_{\lambda \lambda'} P(\lambda, \lambda') \Gamma(\lambda, \lambda'; \theta, \phi)$$

 $\lambda, \lambda' \in (-1, 0, 1)$

 $P(\lambda, \lambda') \longrightarrow$ Polarization density matrix

 $\Gamma(\lambda, \lambda'; \theta, \phi) \rightarrow$ Decay density matrix

Z polarization for triple Higgs

• Extraction of trilinear coupling from ZH production is overwhelmed by tree level anomalous couplings

Anomalous ZZH coupling: Dimension-six operators in SMEFT

• T-odd distributions of the production cross-section can be used

2109.11134

Tree level contributions are T-even

Can constrain λ_{3H} independent of tree level anomalous couplings

We explore the possibility of using Z polarization for measuring trilinear Higgs coupling

Either less sensitive to tree level ZZH coupling or independent of it

Z polarization for triple Higgs

2109.11134

Collider	c.m.	$10^4 \times$	A_{yz}	Lumi-	Lim	it
	energy	unpolarized	polarized	nosity	unpolarized	polarized
	(GeV)	beams	beams	(ab^{-1})	beams	beams
CEPC	240	-0.159		10	506	
CEPC	240	-0.159		20	358	
CLIC	380	-2.88	-10.6	0.5	124	31.0
\mathbf{FCC}	240	-0.159		10	506	
\mathbf{FCC}	250	-0.314		5	362	
\mathbf{FCC}	365	-2.64		1.5	78.2	
ILC	250	-0.314	-1.23	2	573	119
ILC	250	-0.314	-1.23	5	362	75.3
ILC	350	-2.39	-9.38	30	19.4	4.03
ILC	500	-4.00	-15.7	4	31.6	6.57
ILC	500	-4.00	-15.7	10	20.0	4.16
ILC	500	-4.00	-15.7	30	11.5	2.40

Can we improve the sensitivity with machine learning techniques ?

• Graph : A data structure to represent entities and their relationships.

$$G = (V, E) \qquad \qquad E \subseteq V \times V$$

- GNNs are a class of deep learning models that operate directly on graph structures.
- Learn entire graph-level representations by passing and aggregating information along the edges.

The general update rule:

$$\mathbf{h}_{v}^{(k)} = \mathsf{UPDATE}^{(k)} \left(\mathbf{h}_{v}^{(k-1)}, \mathsf{AGGREGATE}^{(k)} \left(\left\{ \mathbf{h}_{u}^{(k-1)} : u \in \mathcal{N}(v) \right\} \right) \right) \right)$$

Graph Neural Network (GNN)

Nodes : $V = \{v_1, v_2, v_3, v_4, v_5\}$ Edges: $E = \{(v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4), (v_4, v_5)\}$

AGGREGATE combines features from neighbors UPDATE combines aggregated messages

• Generalize convolution neural network to graph structured data

Nodes aggregate information from their neighbors through adjacency structure

GCN layer update rule:

 $H^{(l)}$: Node feature matrix at layer l

Graph Convolution Network tasks

Node level prediction 1.

Identification of new particle

Classify scientific paper into categories

2. Graph level prediction

Classify an event as signal or background in particle colliders

Classify a jet as originating from top quark, W/Z/H boson or QCD background

Classify quenched or vacuum like jet in heavy-ion collision

3. Edge level prediction

Jet clusterings

Predict whether two partons are color connected or not

GNN in particle physics

• In particle physics we measure hadrons with certain transverse momentum p_T and energy E

• Full event information including tagging efficiency and missing energy can be used to construct a graph

- 1. Jets are collimated sprays of particles defined by jet algorithms
- 2. Charged particles measured by tracks
- 3. *b* jets are identified with acceptable efficiency > 80%
- 4. All final state particles including jets are connected by well defined invariant mass or angular separation between the particles

GNN for triple Higgs coupling : parton level

• For a given channel for triple Higgs coupling final state particles define nodes

Channel : $gg \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$

- Clean signal and less background 1.
- 2. Branching ratio is small

Goal : build event-level graph representation for machine learning

Background processes

Graph preparation

n	b	b~	γ	γ	рТ	eta	phi
b	1	0	0	0	44	-0.19	0.34
b~	0	-1	0	0	37	-0.29	-3.0
а	0	0	1	0	25	0.02	-2.98
а	0	0	0	1	22	-0.80	-0.3

Each event stored as 4×7 dim matrix 1.

Shape = $(N_{\text{nodes}}, N_{\text{features}})$

- Each node stores 7 dim feature vector 2.
- Missing energy can be stored in feature 3.

Each event is represented by a graph

Nodes : Final state particles

Node features : Four momenta of final state particles

Edges : Invariant mass of final state particles

 m_{ii} = Invariant mass of pairs

$$m^2 = E^2 - p^2$$

Fully connected graph

Training and testing

Training : Classification of signal and background for $gg \rightarrow bb\gamma\gamma$ process

Test:

```
Event 0:
 Node 0: Predicted = 0, Probabilities = [0.9951716 0.00482834]
 Node 1: Predicted = 0, Probabilities = [0.9958319 0.0041681]
 Node 2: Predicted = 0, Probabilities = [0.9963774 0.00362262]
 Node 3: Predicted = 0, Probabilities = [0.9951822 0.00481772]
```

- Experimental analysis based cuts and event selection to prepare graph structure
 - Events must have two *b* tagged jets 1.
 - 2. Events must have two leading photons with invariant mass 105 GeV $< m_{\gamma\gamma} < 160$ GeV
 - 3. Leading photon $p_T > 0.35 m_{\gamma\gamma}$ and subleading photon $p_T > 0.25 m_{\gamma\gamma}$
 - 4. No electrons or muons are present in the event

n	jet1	jet2	γ	γ	MET	рТ	eta	phi
1	1	0	0	0	0	62	2.38	3.05
2	0	1	0	0	0	43	0.21	1.73
3	0	0	1	0	0	99	-1.68	-0.39
4	0	0	0	0	0	21	0.05	2.65
5	0	0	0	0	6	0	-2.01	-4.61

2404.12915

Summary

- Machine learning applications are useful to study triple Higgs coupling
- networks
- e^+e^- polarized beam can be useful to improve accuracy
- For polarization combination $P_{e^-} = -0.8$ and $P_{e^+} = 0.3$ the accuracy to measure κ is about 57 % at $\mathcal{L} = 2 \, \mathrm{ab}^{-1}$
- Sensitivity may be improved by incorporating other channels as well
- will be useful for future direction of particle colliders

• A good accuracy is achieved for classifying signal and background events using graph convolution

• A comparative study of triple Higgs coupling for HL hadron, electron-positron and muon colliders

Thank you for your attention

Z-polarization for trilinear coupling

• A_{vz} is odd under naive time reversal

$$A_{yz} \equiv \frac{\sigma(\cos\theta\sin\phi > 0) - \sigma(\cos\theta\sin\phi < 0)}{\sigma(\cos\theta\sin\phi > 0) + \sigma(\cos\theta\sin\phi < 0)}$$

Can be realised from the transformation properties of $\cos\theta\sin\phi$

- Naive time reversal: Reversal of direction of all spins and momenta but not interchange of initial and final state
- CP-even angular asymmetry odd under naive time reversal is either less sensitive or independent of tree level anomalous couplings

Requires an absorptive part for non-zero value, CPT theorem!

$\frac{1}{2} = \frac{2}{\pi} \sqrt{\frac{2}{3}} T_{yz}$	$T_{yz} \rightarrow \text{Polariz}$	ation component of Z
	1508.04592	1904.06663
	1604.06677	1508.04592
	a na	