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•A quantum field theory that describes electromagnetic, weak and strong 
interactions 

•Particle content :  Quarks (spin-1/2), leptons (spin-1/2) and gauge bosons 
(spin-1 and 0) 

Gauge group :    SU(3)C

QCD

× SU(2)L × U(1)Y

Electroweak

•Successful in predicting masses of W, Z, leptons, quarks (bare mass) 

•Most parameters measured with high accuracy except triple-Higgs coupling

Standard model of particle physics



•First interaction term in Higgs potential

Triple Higgs coupling

V(h) = − μ2ϕ2 + λϕ4 ≡ 1
2 m2

hh2 + λhhhh3 + λhhhhh4

Triple Higgs coupling Quartic self coupling

1. Important to complete SM

2. Important to constraint 
any physics beyond SM

3. Determines electroweak 
phase transition in early 
universe

mh = 125 GeV

λhhh = λhhhh v

Experimentally accessible through double Higgs and single Higgs production at high-energy particle colliders 
such as proton-proton (pp), electron-positron

λhhhh = m2
h

2v2



Hadron colliders

•Direct probe for triple Higgs coupling is gg → HH

• Indirect channel:   enters at NLOλ3H

λ3H at leading order (LO)           direct channel

•Cancellation between box and triangle diagrams: destructive interference

•Destructive interference leads to extremely small cross-section

•High beam energy is required

Accuracy of the determination

 of  is low λ3H

1702.01737
1702.07678

−0.8 < λ3H

λSM
< 7.7

1607.04251
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Electron positron colliders

•Higgs associated production is sensitive to  at NLO in  collider: Indirect measurementλ3H e+e−

e−

e+

Z∗

Z

H

λ3H = λSM(1 + δh)  Parameterises deviation to self couplingδh

Can constrain  in a model dependent wayδh  FCC-ee at  by 28%s = 240 GeV

• With  ( ), combination of  
and  can be constrained

HZZ δZ δZ
δh

• Precision measurements at different 
c.o.m energies can be useful to 
constrain the combination of  and δh
δZ

Sensitivity can be improved if  can be removed somehow! δZ

1312.3322

1809.10041

1704.01953

ℒ ∼ 10 ab−1
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ℒ ∼ 2 ab−1

•Fractional change in cross-section and  limit on 1σ κ

•Polarized beam can improve sensitivity

Trilinear coupling at e+e− → ZH
2304.11573
1805.03417

•For  the accuracy to measure  is about Pe− = − 0.8 and Pe+ = 0.3 κ 57 %



λ, λ′ ∈ (−1,0,1)

1
σ

dσ
dΩf

∝ ∑
λ λ′ 

P(λ, λ′ )Γ(λ, λ′ ; θ, ϕ)

P(λ, λ′ )

Γ(λ, λ′ ; θ, ϕ)

Polarization density matrix

Decay density matrix

•  and  are polar and azimuthal angles of final state fermion in the rest frame of Vθ ϕ

• Polarization parameters can be extracted from polarized matrix elements

• Angular asymmetries of decay products

Z polarization for triple Higgs

2109.11134



Z polarization for triple Higgs

•Extraction of trilinear coupling from  production is overwhelmed by tree level anomalous couplingsZH

•T-odd distributions of the production cross-section can be used

Tree level contributions are T-even

We explore the possibility of using Z polarization 

for measuring trilinear Higgs coupling

Can constrain  independent of tree level

anomalous couplings  

λ3H

Anomalous ZZH coupling: Dimension-six operators in SMEFT

Either less sensitive to tree level ZZH coupling

or independent of it

2109.11134



2109.11134

Can we improve the sensitivity with machine learning techniques ?

Z polarization for triple Higgs



Graph Neural Network (GNN)

•Graph : A data structure to represent entities and their 
relationships.

•GNNs are a class of deep learning models that operate directly 
on graph structures.

h(k)
v = UPDATE(k) (h(k−1)

v , AGGREGATE(k) ({h(k−1)
u : u ∈ 𝒩(v)}))

G = (V, E) E ⊆ V × V

•Learn entire graph-level representations by passing and 
aggregating information along the edges.

AGGREGATE combines features from neighbors

UPDATE combines aggregated messages

The general update rule:

v1

v2

v3

v4 v5

Node
Edge

Nodes : V = {v1, v2, v3, v4, v5}

Edges : E = {(v1, v2), (v1, v3), (v2, v4), (v3, v4), (v4, v5)}



Graph Convolution Network (GCN)

H(l+1) = σ (D̃−1/2ÃD̃−1/2H(l)W(l))

GCN layer update rule:

H(l) : Node feature matrix at layer l

H(0) = input features

Learnable weight matrix at layer l

Ã = A + I : Adjacency matrixNonlinear activation ReLU

•Generalize convolution neural network to graph structured data

Nodes aggregate information from their neighbors through adjacency structure

Diagonal matrix: D̂ii = ∑
j

̂Aij



Graph Convolution Network tasks

1. Node level prediction

2. Graph level prediction

3. Edge level prediction

Classify scientific paper into categories 

Identification of new particle

Classify an event as signal or background in particle colliders

Classify a jet as originating from top quark, W/Z/H boson or QCD background

Classify quenched or vacuum like jet in heavy-ion collision

Jet clusterings

Predict whether two partons are color connected or not



GNN in particle physics

• In particle physics we measure hadrons with certain transverse momentum  and energy pT E

1. Jets are collimated sprays of particles 
defined by jet algorithms

2. Charged particles measured by tracks

3.  jets are identified with acceptable 
efficiency  
b

> 80 %

4. All final state particles including jets are 
connected by well defined invariant mass or 
angular separation between the particles

•Full event information including tagging efficiency and missing energy can be used to construct a graph 



GNN for triple Higgs coupling : parton level

•For a given channel for triple Higgs coupling final state particles define nodes 

Channel :  gg → HH → bb̄γγ

Background processes

Signal   

1. Clean signal and less background

2. Branching ratio is small

Goal : build event-level graph representation for machine learning



Graph preparation

n b b~ pT eta phi

b 1 0 0 0 44 -0.19 0.34

b~ 0 -1 0 0 37 -0.29 -3.05

a 0 0 1 0 25 0.02 -2.98

a 0 0 0 1 22 -0.80 -0.37

Nodes : Final state particles 

Node features : Four momenta of final state particles

Edges : Invariant mass of final state particles
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Fully connected graph

Each event is represented by a graph

1. Each event stored as  dim matrix 4 × 7

Shape = (Nnodes, Nfeatures)

2. Each node stores  dim feature vector 7

3. Missing energy can be stored in feature 

mij = Invariant mass of pairs

m2 = E2 − p2

γ γ



Training and testing

Training : Classification of signal and background for  processgg → bb̄γγ

Event 0: 
  Node 0: Predicted = 0, Probabilities = [0.9951716  0.00482834] 
  Node 1: Predicted = 0, Probabilities = [0.9958319 0.0041681] 
  Node 2: Predicted = 0, Probabilities = [0.9963774  0.00362262] 
  Node 3: Predicted = 0, Probabilities = [0.9951822  0.00481772]

Event 3: 
  Node 0: Predicted = 1, Probabilities = [0.04787536 0.9521247 ] 
  Node 1: Predicted = 1, Probabilities = [0.14829516 0.85170484] 
  Node 2: Predicted = 1, Probabilities = [0.04821268 0.9517873 ] 
  Node 3: Predicted = 1, Probabilities = [0.14607167 0.8539284 ]

Test :



GNN for triple Higgs coupling

• Experimental analysis based cuts and event selection to prepare graph structure

1. Events must have two  tagged jets b

2. Events must have two leading photons with invariant mass 105 GeV < mγγ < 160 GeV

3. Leading photon  and subleading photon pT > 0.35mγγ pT > 0.25mγγ

p/e+/μ+ p/e−/μ−

b jet
b jet

photonphoton

4. No electrons or muons are present in the event

n jet1 jet2 MET pT eta phi
1 1 0 0 0 0 62 2.38 3.05
2 0 1 0 0 0 43 0.21 1.73
3 0 0 1 0 0 99 -1.68 -0.39
4 0 0 0 0 0 21 0.05 2.65
5 0 0 0 0 6 0 -2.01 -4.61

105 GeV < mγγ < 160 GeV

2404.12915

γ γ



Summary 

•Machine learning applications are useful to study triple Higgs coupling

•A good accuracy is achieved for classifying signal and background events using graph convolution 
networks

•  polarized beam can be useful to improve accuracy e+e−

•Sensitivity may be improved by incorporating other channels as well

•For polarization combination  the accuracy to measure  is about at Pe− = − 0.8 and Pe+ = 0.3 κ 57 %
ℒ = 2 ab−1

•A comparative study of triple Higgs coupling for HL hadron, electron-positron and muon colliders 
will be useful for future direction of particle colliders



Thank you  
for your attention



Z-polarization for trilinear coupling 

Ayz ≡ σ(cos θ sin ϕ > 0) − σ(cos θ sin ϕ < 0)
σ(cos θ sin ϕ > 0) + σ(cos θ sin ϕ < 0) = 2

π
2
3 Tyz Tyz → Polarization component of Z

1604.06677 1508.04592

1508.04592 1904.06663
•         is odd under naive time reversalAyz

Requires an absorptive part for non-zero value, CPT theorem!

Can be realised from the transformation properties of  cos θ sin ϕ

•Naive time reversal: Reversal of direction of all spins and momenta but not interchange of initial and 
final state

•CP-even angular asymmetry odd under naive time reversal is either less sensitive or independent of tree 
level anomalous couplings


