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Background

Electrohydrodynamic (EHD) printing: an emerging printing technique capable of producing micro- or
nano-resolution products with various materials.
-- inexpensive, versatile, highly customizable with sub-micron resolution
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Schematic diagram of a high-resolution e-jet printer [1].
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Modes of Jetting: 1) MISSISSIPPI
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Objectives:
Predict jetting behavior for wide
combination processing conditions
and materials (from a wide range of
Cone-jetting Unstable Cone-jetting sources).

Current Gaps:

Expensive trial-and-error experiments explored limited materials
and process conditions.

Previously developed models not applicable to new material



Outline of the presentation MISSISSIPPI

Jetting behavior (y)
= f(ink parameters, instrument paramaters, processing paramters ....

 Machine learning prediction of y for a given set of parameters
- Role of high-speed videography in the learning process

- Incorporation of physics during the learning process

* Inverse problem: For a target y predict the set of parameters
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A detailed breakdown for materials in the dataset

MaChl ne Iea n Ing Materials Materials Printing parameters | Jetting Diameter of the
. . . properties (X) X) mode (Y) | printed materials (Y)
Traln_teSt Sp“t' 8020 Paraffin wax | Surface tension | Electric field (x.) Filament | Diameter of filament
PCL |} (x1) Pressure (xs) Droplet (Y2)
AgNW IR Viscosity (x2) Nozzle size (x) (Y1) Diameter of droplet
. . AgNP I} Density (x3) Printing temp (x7) (Y3)
Feature im portan ce analys IS. Mixtures of glycerine, Printing speed (xs;
water and NaC1 @ only for filament)
Random foreSt PEDOT:PSS .
PS@
PMMA @ 0
Field’s metal
MOdels Glycerin |}

] @ Data from literatures M Our Experiments
- Regression:

Kernel ridge regression (KRR
@98 Ty on ( ) The input features and output target in each dataset

Dataset No. Input Features (XX) Output target ()
- Classification: 1 X1, X2, X3, X4, X5, X6, X7 Y: (109 samples)
. 2 5 Y.
Support vector machine (SVM) T X2 X3 X X X6 X7 X8 2 (72 samples)
3 X1, X2, X3, X4, X5, X6, X7 Ys (53 samples)




Results: Feature Selection Analysis
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(b) Regression (diameter of droplet);
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(c) Regression (diameter of filament).

» |nk parameters (viscosity, density and surface
tension) is ranked the highest among the
features in determining the jetting mode.

= Both nozzle size and pressure are very
important in controlling the droplet diameter.

= Density and electric field affect the filament
diameter
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Results: Prediction for New Material
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In this research on ML guided EHD printing study:

« ML models are developed to predict jetting model and diameter of printed
materials with high accuracy in both random train/test split and new material

prediction cases.

* Importance information behind the competition among the materials properties
and processing conditions on determining jetting mode and diameter of printed
materials.

« Machine learning can lead the research to a more comprehensive, more efficient
direction with less cost and consumed time, which help us relieve the issues
caused by the experiments.
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