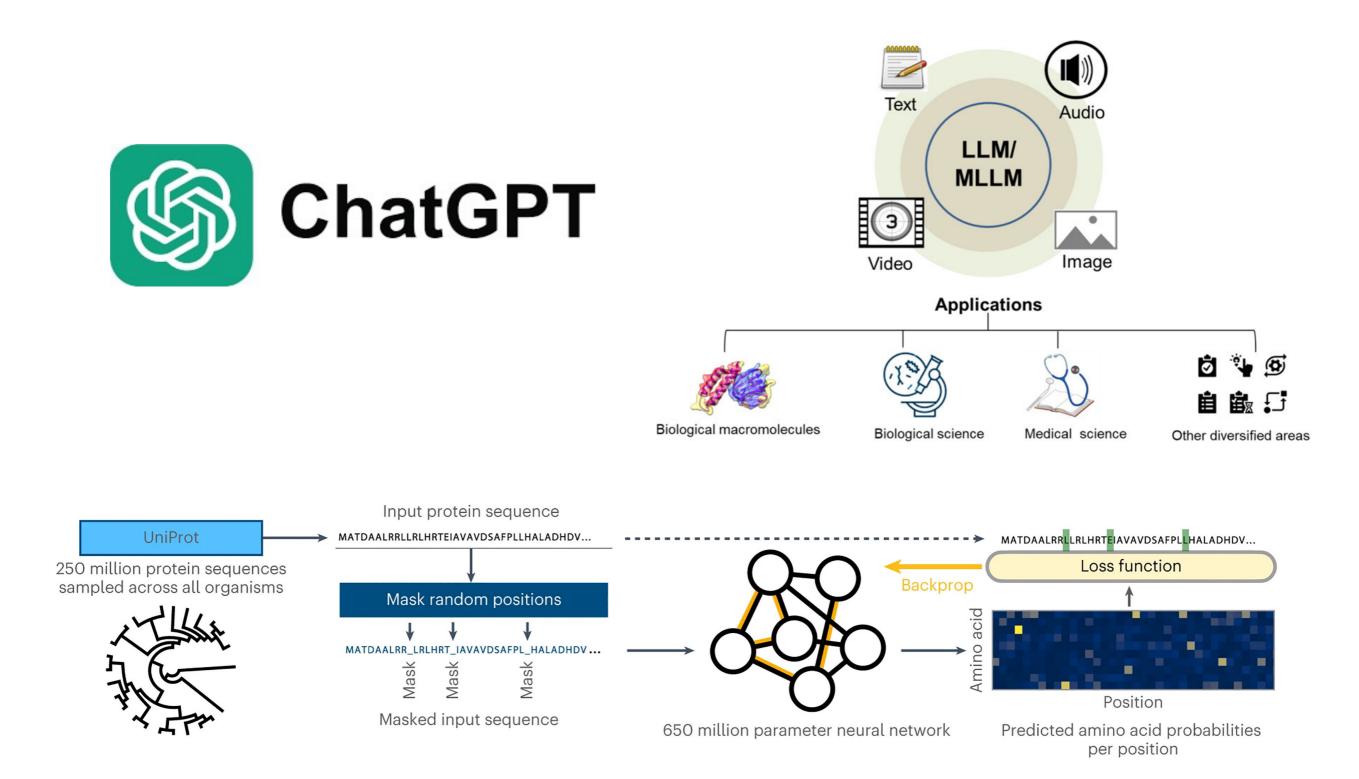
LLM-powered deep learning models for protein-nucleic acid interactions

Debswapna Bhattacharya Virginia Tech

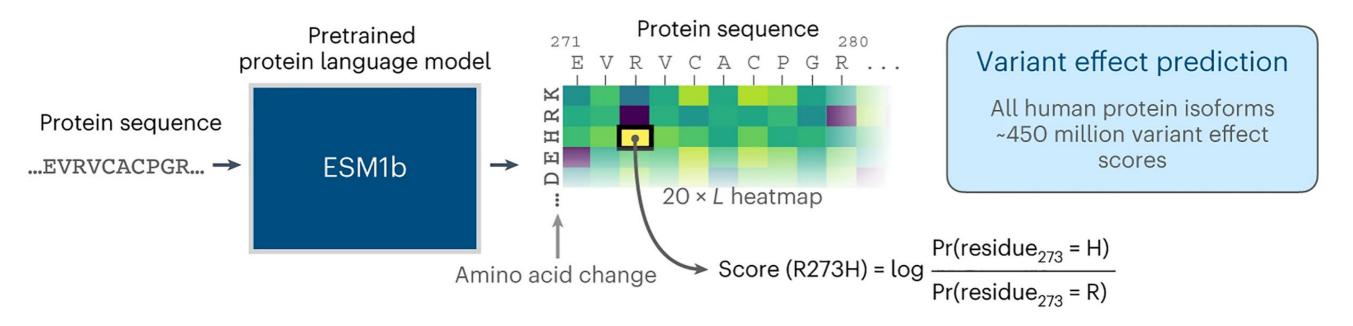
Workshop for AI-Powered Materials Discovery at Great Plains

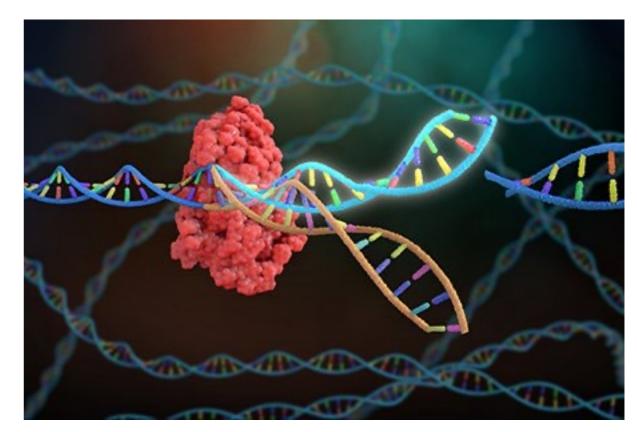
June 24, 2025

Large language models (LLMs) for Bio

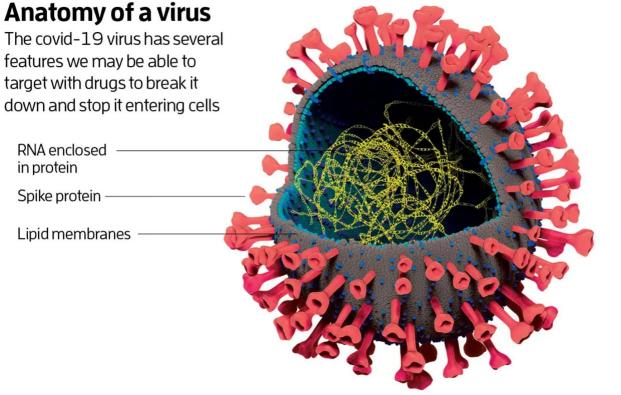


Applications of LLMs for Bio





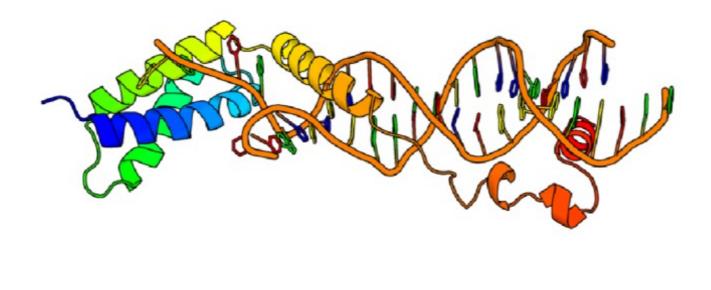
CRISPR/Cas9-Based Therapeutics

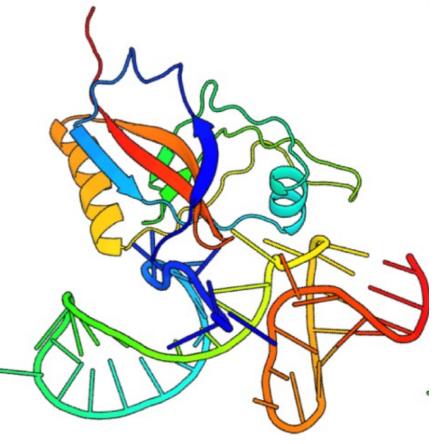


Viral pathogenesis

in protein

Protein-nucleic acid interactions



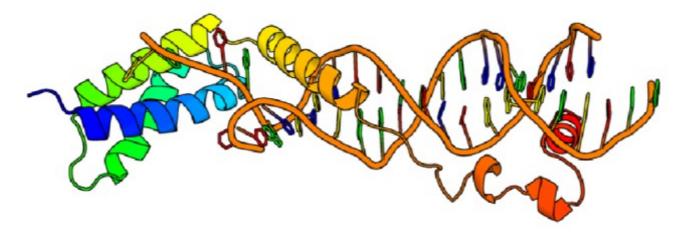


Protein-DNA interaction

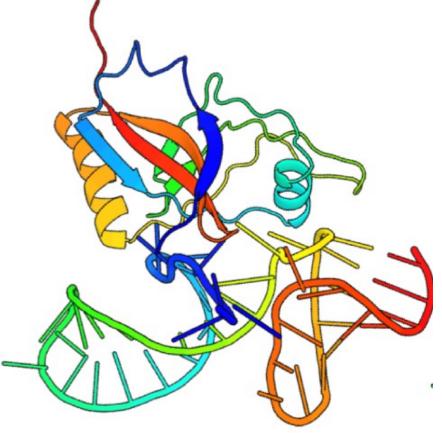
Protein-RNA interaction

- Underpins a wide range of cellular processes: from gene replication to regulation to signal transduction to metabolism
- Reliable and accurate characterization of protein-nucleic acid 3D interactions in a large-scale screening manner is highly desirable

Protein-nucleic acid interactions in atomic detail



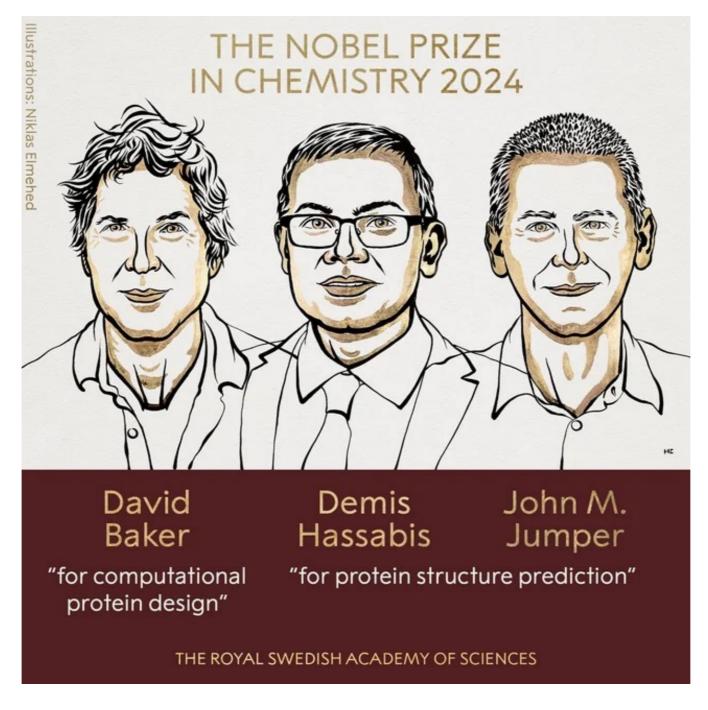
Protein-DNA interaction



Protein-RNA interaction

- Experimental structure determination is not always feasible or practical
- Can we use computational modeling to address this gap?

Harness AI to predict structure from sequence using AlphaFold



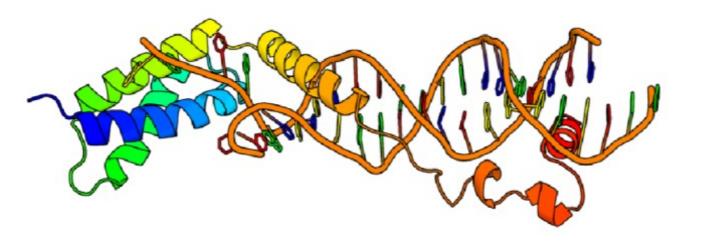
Can AlphaFold address this gap?

Protein-RNA complex structure prediction is not highly accurate even with AlphaFold3

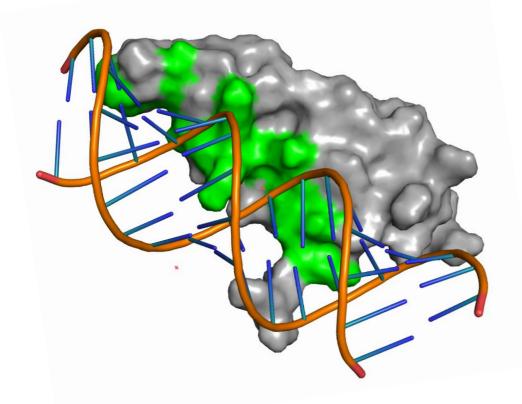


Computational methods for predicting the structures are not highly accurate

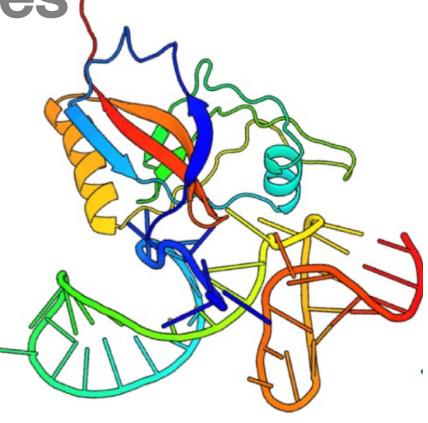
Protein-nucleic acid interactions: from structures to binding sites (



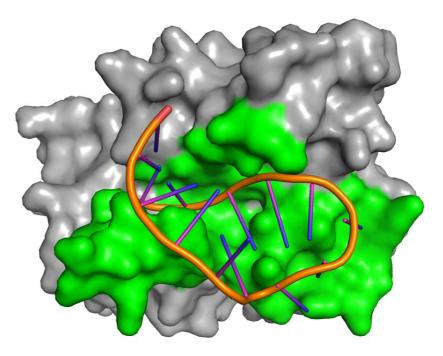
Protein-DNA interaction



atomic level structure

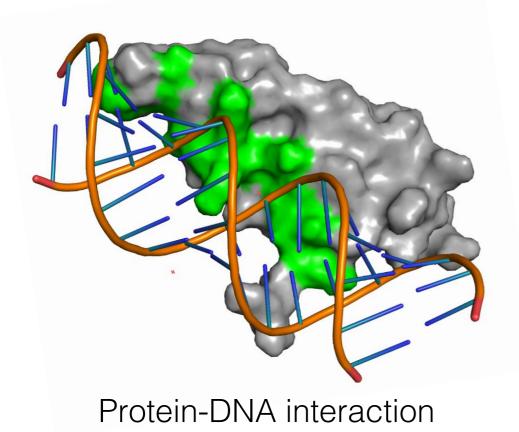


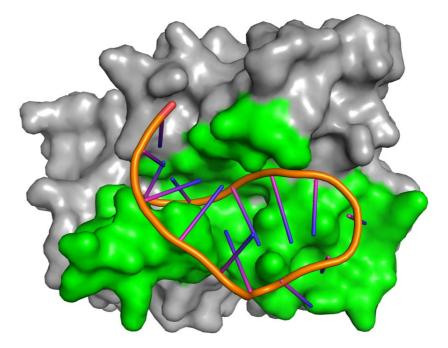
Protein-RNA interaction



binding sites

Protein-nucleic acid binding sites





Protein-RNA interaction

- Binding sites = atom pairs within sum of van der Waal's radius+0.5Å
- Unfortunately, experimental characterization is time-consuming and expensive

This talk...

I. Protein-nucleic acid binding site prediction powered by LLMs & deep graph learning

II. Single-sequence protein-nucleic acid 3D structure prediction using geometric attention-enabled pairing of bio LLMs

III. Future directions

Al-powered biomolecular modeling

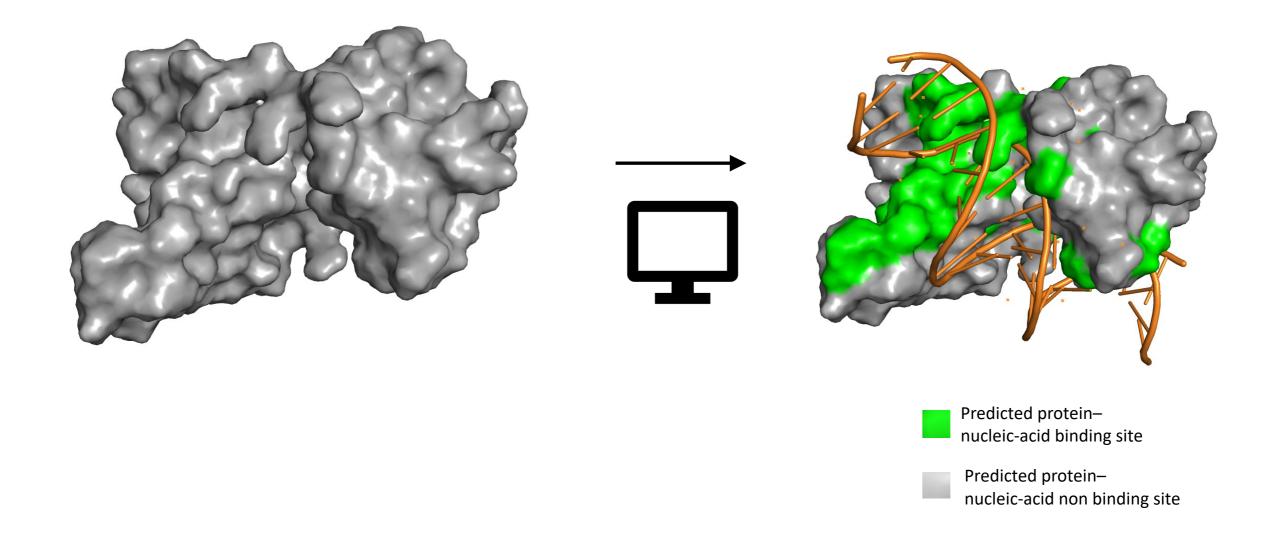
This talk...

I. Protein-nucleic acid binding site prediction powered by LLMs & deep graph learning

II. Single-sequence protein-nucleic acid 3D structure prediction using geometric attention-enabled pairing of bio LLMs

III. Future directions Al-powered biomolecular modeling

Protein-nucleic acid binding site prediction: a protein-centric view



Partner-independent protein-nucleic acid binding site prediction

Protein-nucleic acid binding site prediction: existing approaches

Sequence-based

Utilizes protein sequence + evolutionary information

(e.g., SVMnuc, NCBRPred,...)

+ Sequence readily available

- Tends to be less accurate

Structure-aware

Utilizes protein sequence + evolutionary + structural information

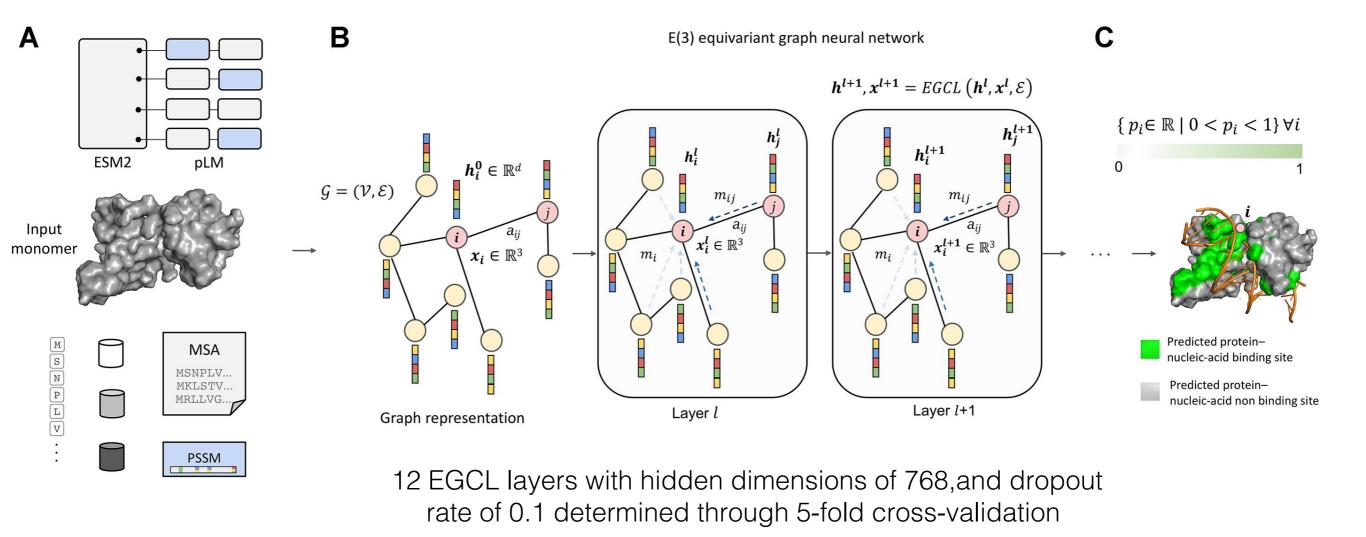
(e.g., GraphBind, GraphSite)

- + Generally more accurate
- Needs structural data, but
 AlphaFold can be used

What if we integrated **protein language model (pLM)** embeddings?

Su, H. et. al., 2019 Zhang, J. et. al., 2021 Yuan, Q. et. al., 2022 Xia, Y. et. al., 2021

EquiPNAS: pLM-informed equivariant deep graph learning



Graph node classification for residue-level binding site prediction

EquiPNAS features: sequence- and pLM-based features

Features [shape]	Description
aa [L, 20]	One-hot encodings of 20 amino acid residue types.
PSSM <i>[L, 20]</i>	Normalized position specific scoring matrix (PSSM).
MSA <i>[L, 256]</i>	Multiple sequence alignment (MSA) representation distilled through ColabFold's EvoFormer blocks.
pLM <i>[L, 5120]</i>	pLM embeddings from ESM-2 with 15B parameters.

EquiPNAS features: structures-based features

Features [shape]	Description
SS [L, 11]	One-hot encodings of 3- and 8-state secondary structure.
RSA [L, 10]	One-hot encodings of 2- and 8-state relevant solvent accessibility.
Local geometry [L, 11]	Cosine angle between the C=O of consecutive residues, normalized values of virtual bond and torsion angles, and normalized peptide backbone torsion angles.
Residue orientation [L, 9]	Unit vectors pointing towards the directions of $C_{\alpha}^{(i+1)} - C_{\alpha}^{i}$, $C_{\alpha}^{(i-1)} - C_{\alpha}^{i}$ and $C_{\beta}^{i} - C_{\alpha}^{i}$.
Relative residue positioning [L, 2]	Two types of relative positional features for the i th residue: (1) inverse of i representing the relative sequence position, and (2) inverse of the Euclidean distance of C_{α} atom from the centroid representing the relative spatial positioning.
Residue virtual surface area [L, 1]	Virtual surface area of the conceptual convex hull constructed by the atoms in a residue.
Contact count [L, 1]	The number of spatial neighbors of each residue.

EquiPNAS features: coordinate and edge features

• Coordinate feature:

 $C_{\alpha}(x, y, z)$ coordinates from input protein structure

• Edge feature:

Ratio of logarithmic sequence separation & Euclidian distance

$$a_{ij} = \frac{\log(abs(i-j))}{||x_i - x_j||}$$

EquiPNAS datasets: standard sets from the BioLiP database

• Protein-DNA

Train: 573 targets; 14,479 binding & 145,404 non-binding sites
Test:181 targets; 3,208 binding & 72,050 and non-binding sites

- Protein-RNA
 - Train: 495 targets; 14,609 binding & 122,290 non-binding sites
 Test: 117 targets; 2,031 binding & 35,314 non-binding sites

NOTE: Pre-processed to filter out protein chains with >30% sequence similarity between the train and test sets using CD-HIT

EquiPNAS results: protein-DNA binding site prediction

- Use AlphaFold2 predicted structural models as input
- Randomly sample 70% of the targets for each of the test sets, repeating it 10 times, means and standard deviations are reported

	Datasets	Methods	ROC-AUC	PR-AUC
Protein-DNA	Test_181	GraphBind	0.8916 ±	0.3102 ±
			0.006003703	0.017706245
		p-value	8.63327E-08	7.16361E-09
		GraphSite	0.8964 ±	0.3286 ±
			0.006292853	0.018124262
		p-value	2.25585E-07	7.9832E-07
		EquiPNAS	0.9159 ±	0.3717 ±
			0.00395671	0.018372987

EquiPNAS results: protein-RNA binding site prediction

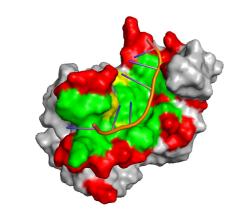
- Use AlphaFold2 predicted structural models as input
- Randomly sample 70% of the targets for each of the test sets, repeating it 10 times, means and standard deviations are reported

	Datasets	Methods	ROC-AUC	PR-AUC
		GraphBind	0.7942 ±	0.2019 ±
Protein-RNA			0.006250333	0.009573691
	T., 117	p-value	2.3402E-11	1.44E-10
	Test_117	EquiPNAS	0.8856 ±	0.3118 ±
			0.006221825	0.013003

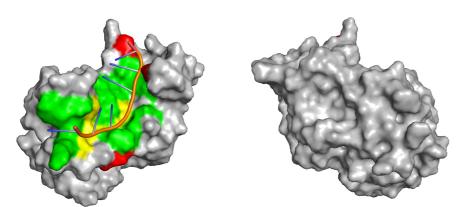
Green: TP Red: FP Yellow: FN

Protein-DNA

7kuf_A

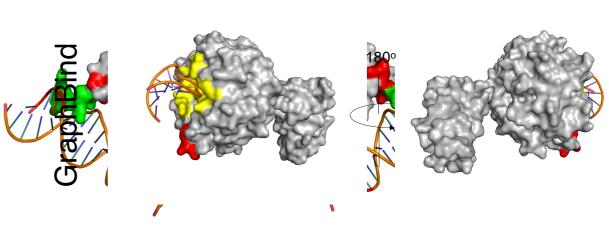


F1-score = 0.64, MCC = 0.637 ROC-AUC = 0.985, PR-AUC = 0.837



F1-score = 0.933, MCC = 0.928 ROC-AUC = 1.0, PR-AUC = 1.0 Protein-RNA

6fq3_A



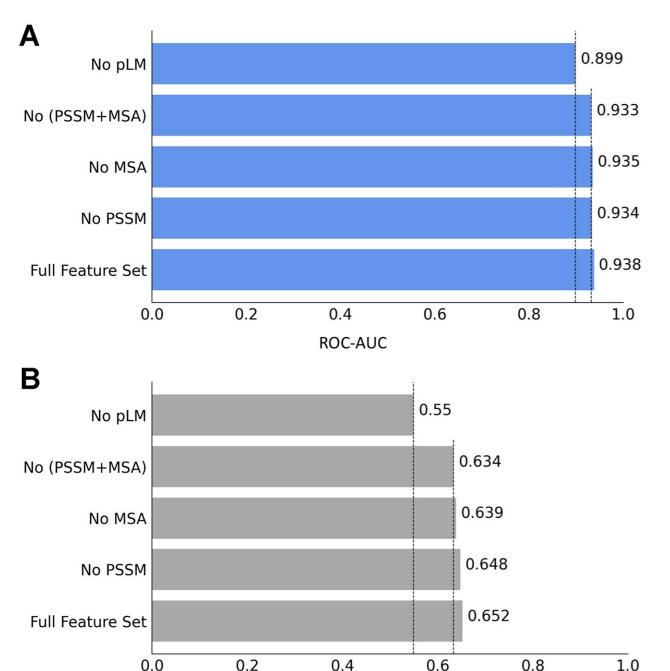
F1-score = 0, MCC = -017 ROC-AUC = 0.447, PR-AUC = 0.024



F1-score = 0.545, MCC = 0.555 ROC-AUC = 0.988, PR-AUC = 0.732

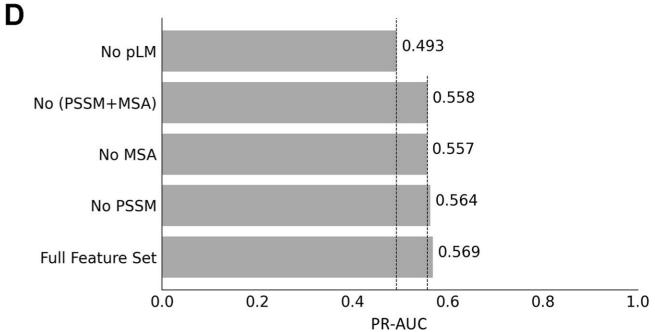
Ablation study using 5-fold cross-validation: contribution of pLM embeddings

Protein-DNA



PR-AUC





Ablation study: EquiPNAS results w/o (MSA +PSSM)

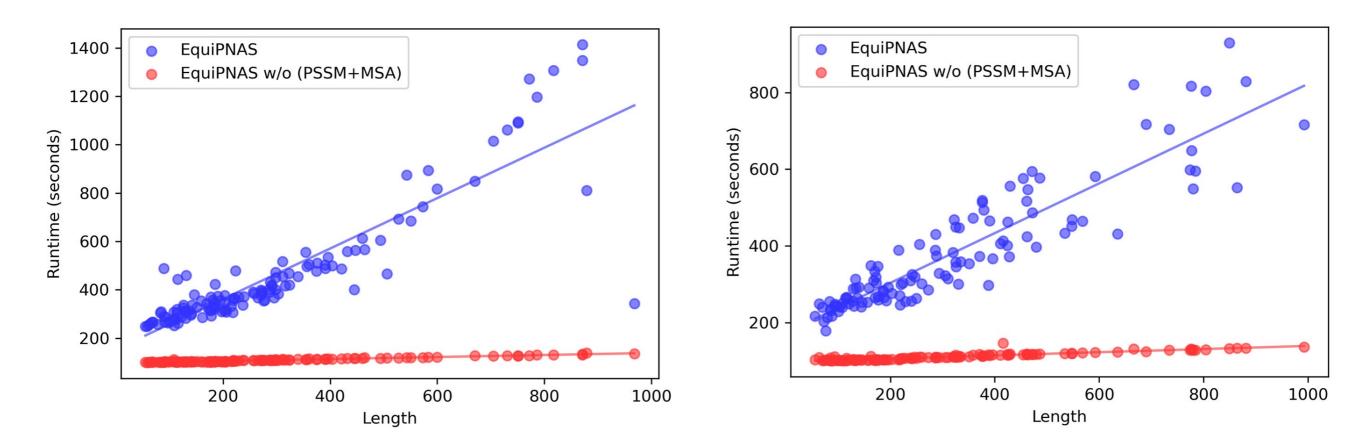
	Datasets	Methods	ROC-AUC	PR-AUC
		GraphBind	0.793	0.204
Protein-RNA	Test_117	EquiPNAS w/o (MSA+PSSM)	0.877	0.299
		EquiPNAS	0.886	0.320

pLM embeddings reduce the dependence on the availability of explicit evolutionary information without a drastic drop in accuracy

Ablation study: running time

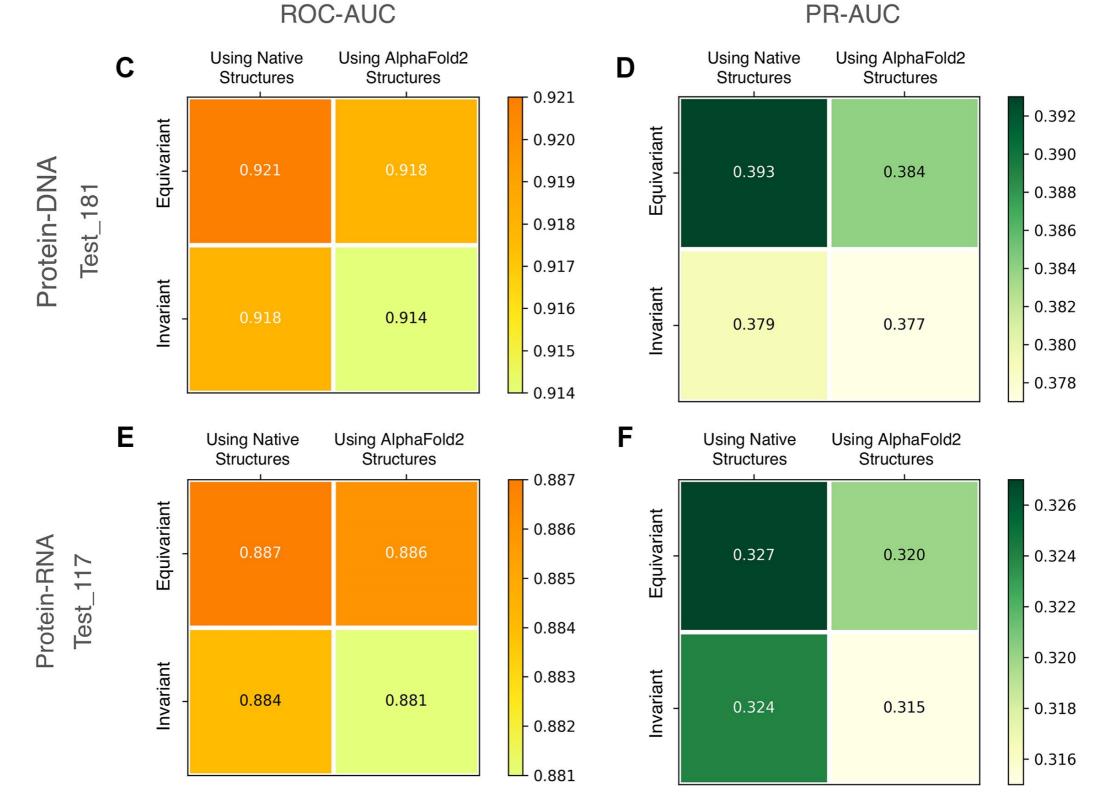
Protein-DNA

Protein-RNA

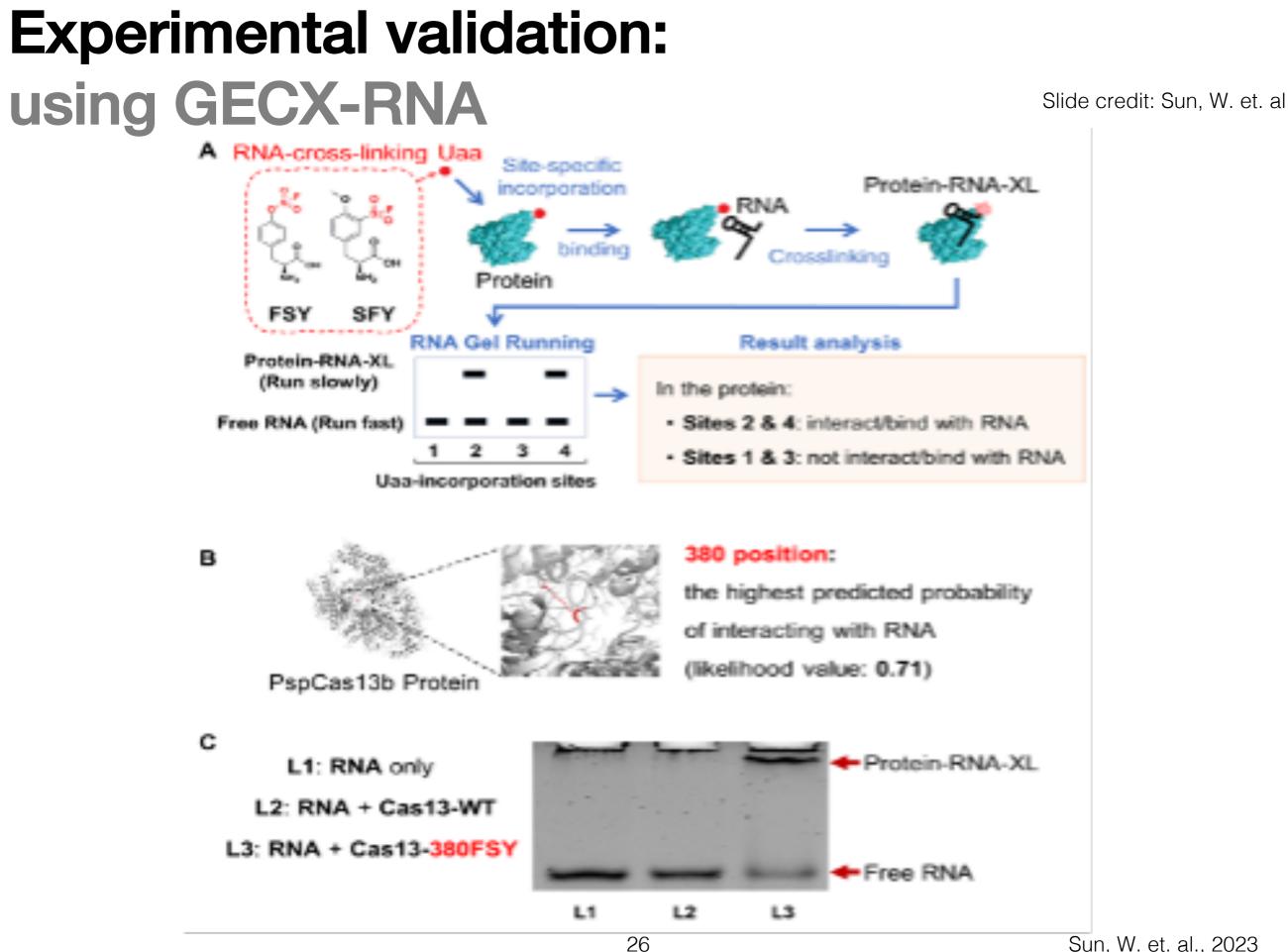


Bypassing the search for explicit evolutionary information leads to orders of magnitude speedup

Ablation study: contribution of equivariance



25



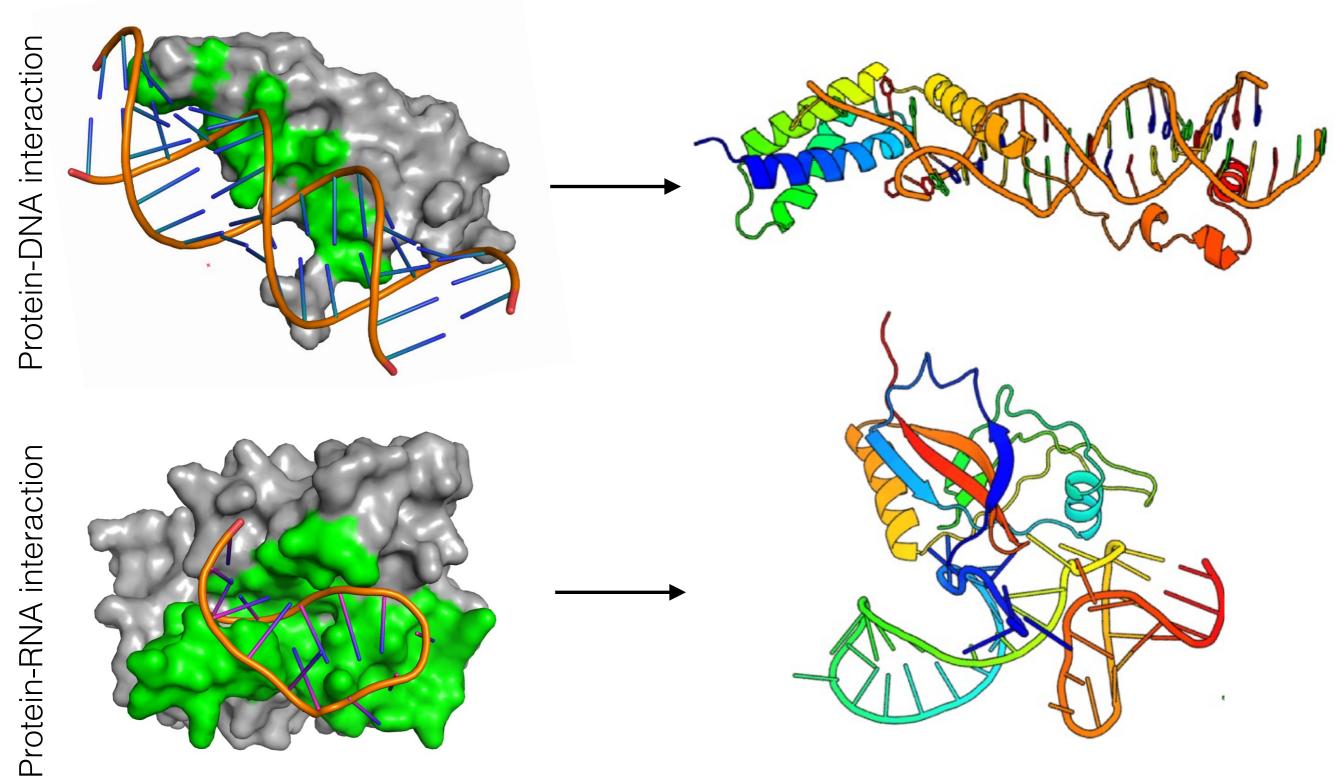
This talk...

I. Protein-nucleic acid binding site prediction powered by LLMs & deep graph learning

II. Single-sequence protein-nucleic acid 3D structure prediction using geometric attention-enabled pairing of bio LLMs

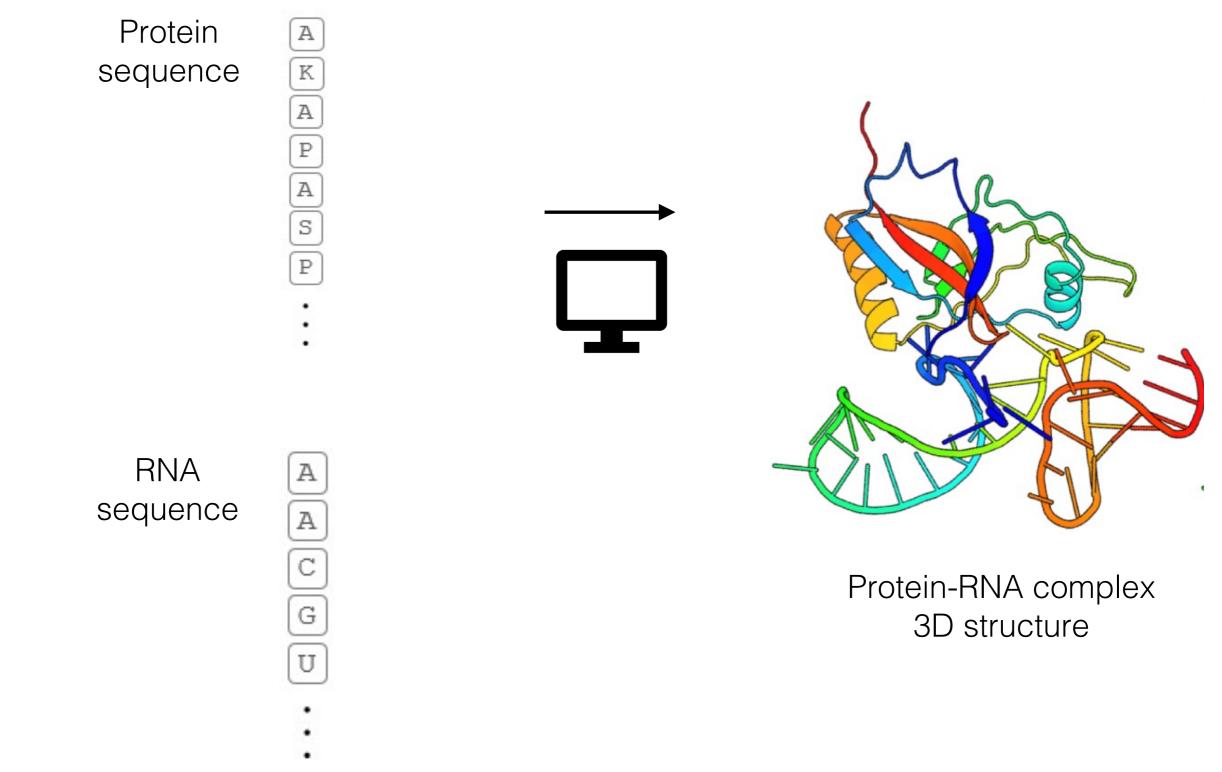
III. Future directions Al-powered biomolecular modeling

Beyond binding sites: protein-nucleic acid complex structures

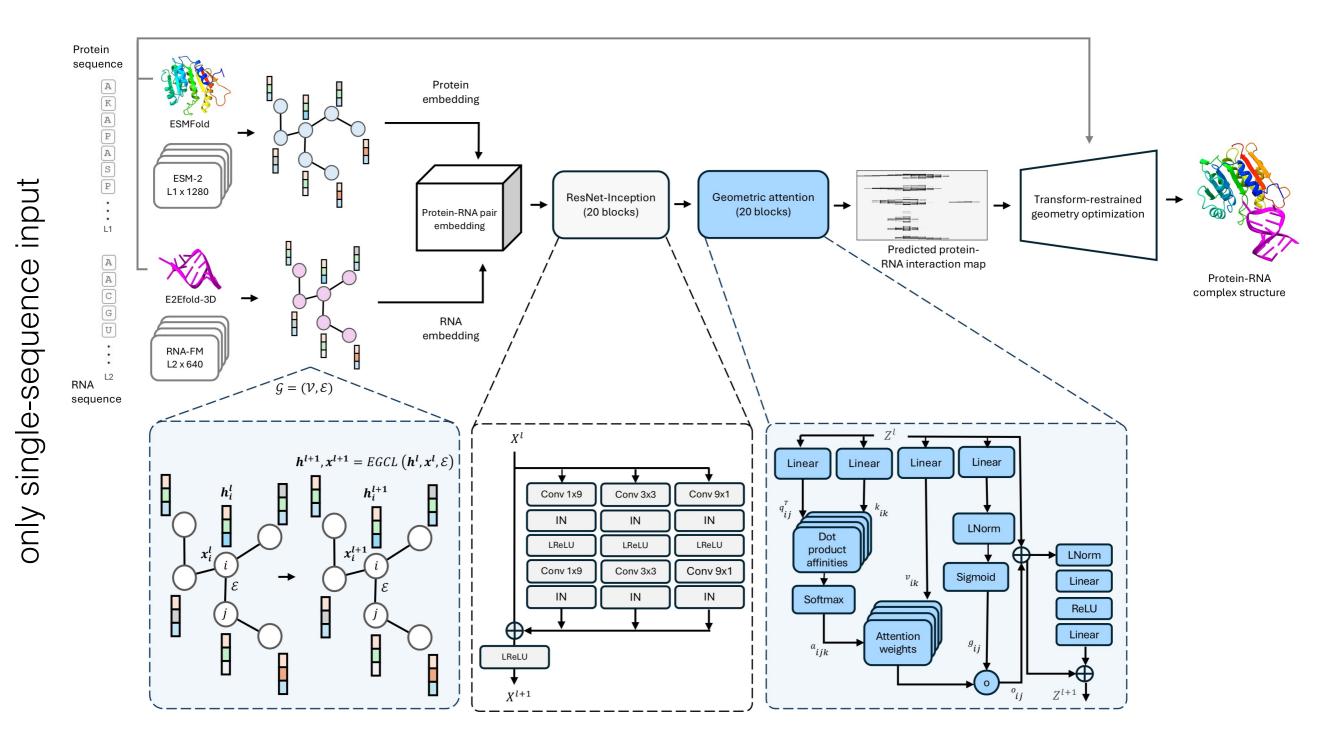


binding sites

Protein-nucleic acid 3D structure prediction: from sequence to all-atom coordinates



ProRNA3D-single : protein-nucleic acid 3D structure prediction



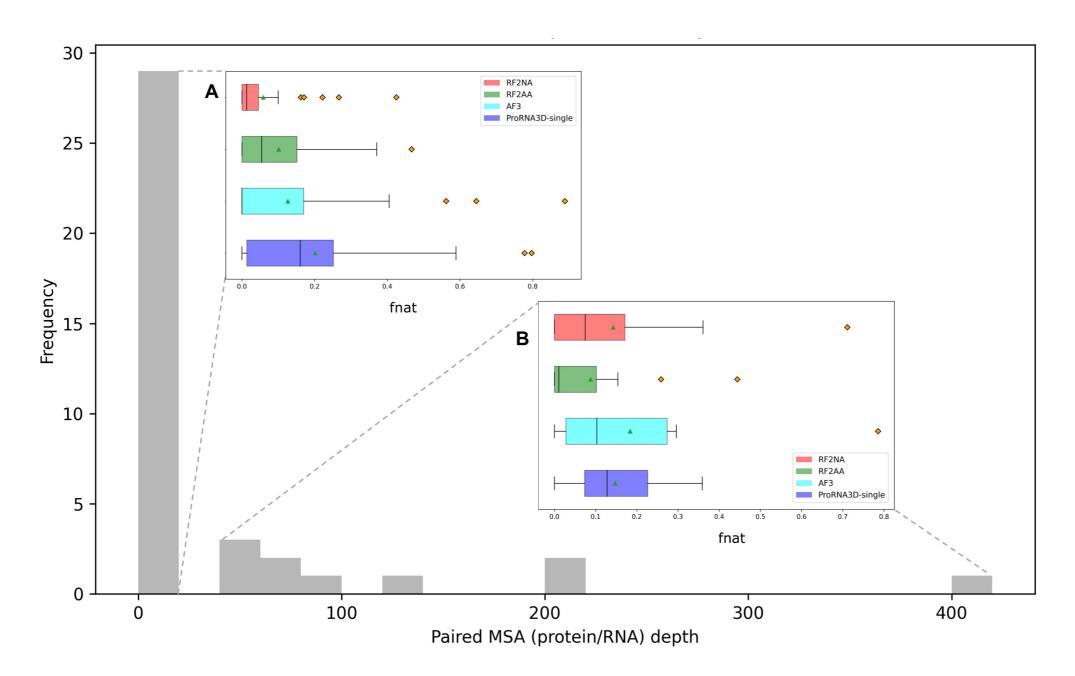
Geometric attention-enabled pairing of biological LLMs

ProRNA3D-single datasets: X-ray crystal structures from the PDB

- Filtering
 - \circ resolution < 3.5 Å
 - deposited to the PDB on and before October 2022
- Datasets
 - o Train: 750 targets
 - o Validation: 48 targets

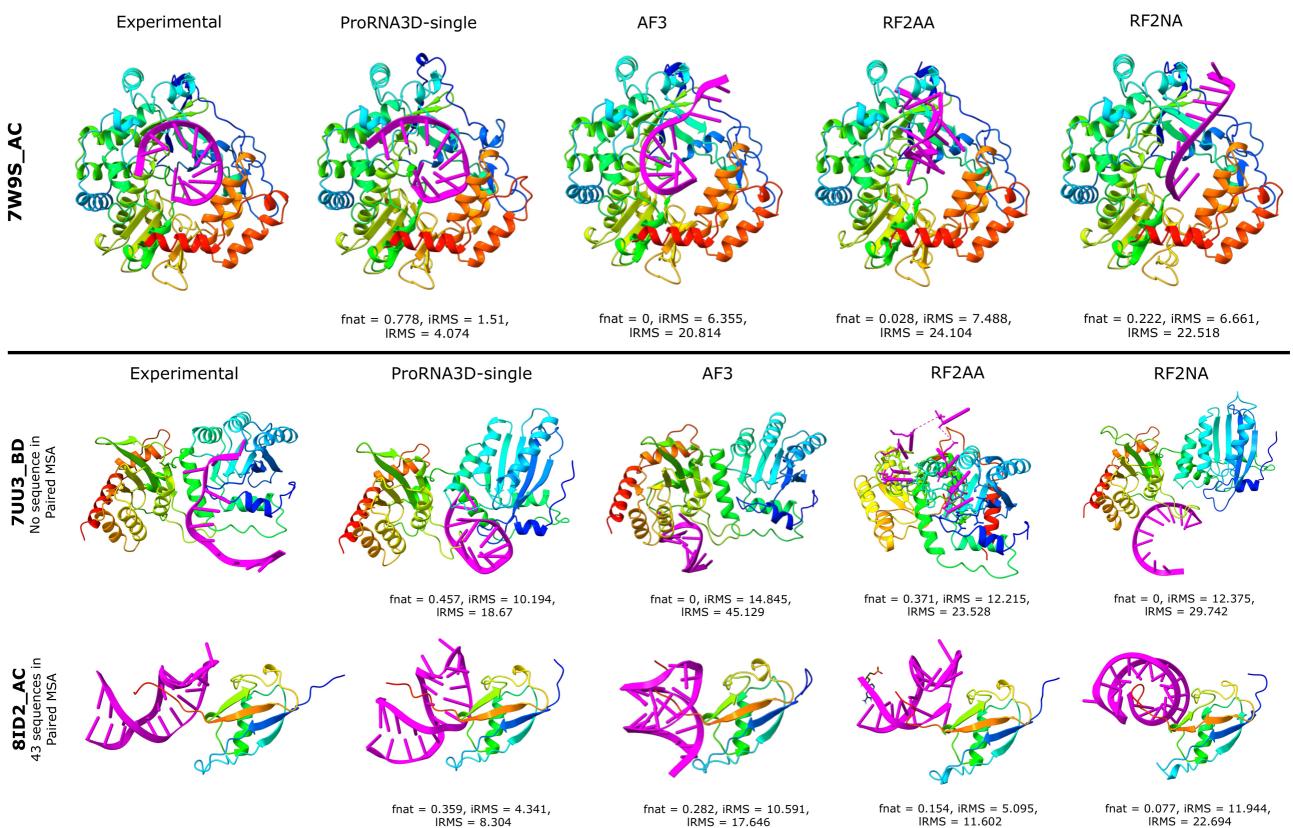
NOTE: Test set consists of targets released on and after November 2022 till November 2023

ProRNA3D-single results: protein-RNA complex structure prediction

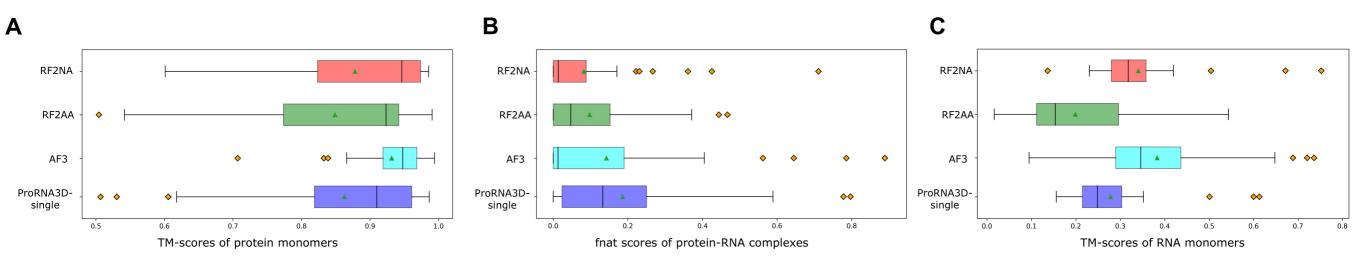


ProRNA3D-single outperforms SOTA methods including AlphaFold3, particularly when evolutionary information is limited

Case study

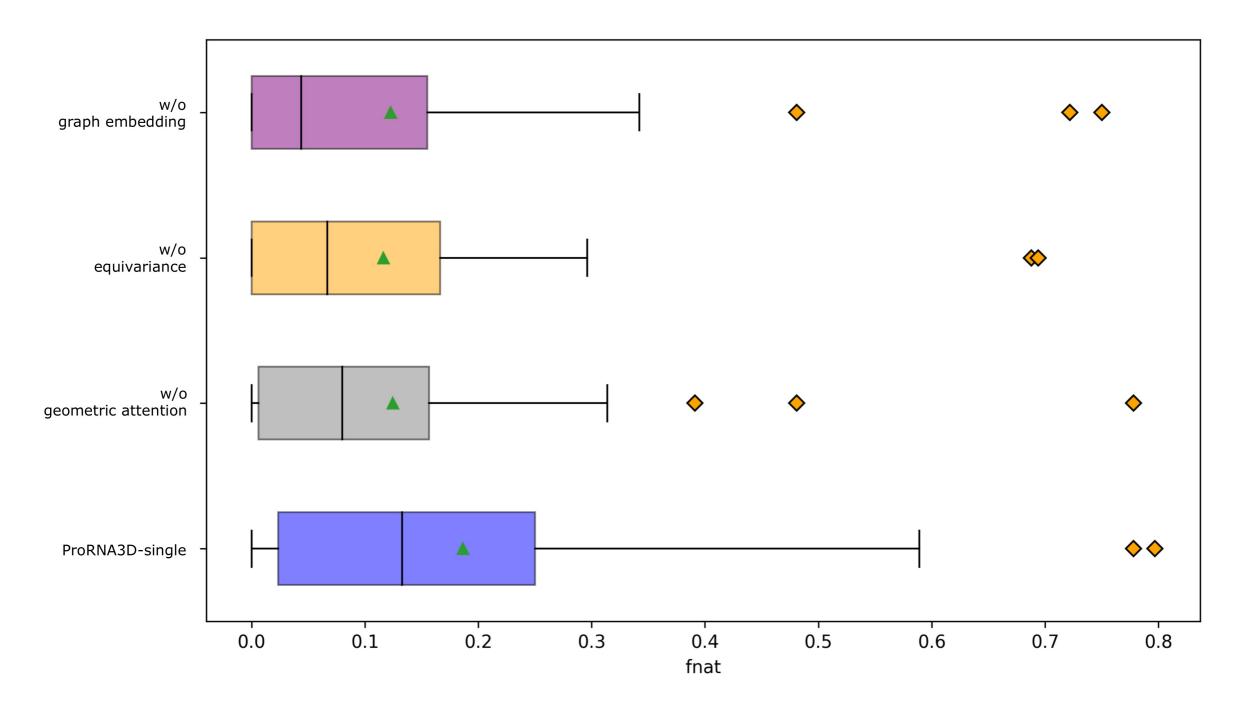


Ablation study: effect of modeling accuracy of the individual components



Performance gain is not because of individual protein or RNA component modeling, but due to improved inter-protein-RNA interaction prediction

Ablation study: contribution of the neural architecture



Both symmetry-aware graph convolutions and geometric attention module are the key modules of the neural architecture of ProRNA3D-single

This talk...

I. Protein-nucleic acid binding site prediction powered by LLMs & deep graph learning

II. Single-sequence protein-nucleic acid 3D structure prediction using geometric attention-enabled pairing of bio LLMs

III. Future directions

Al-powered biomolecular modeling

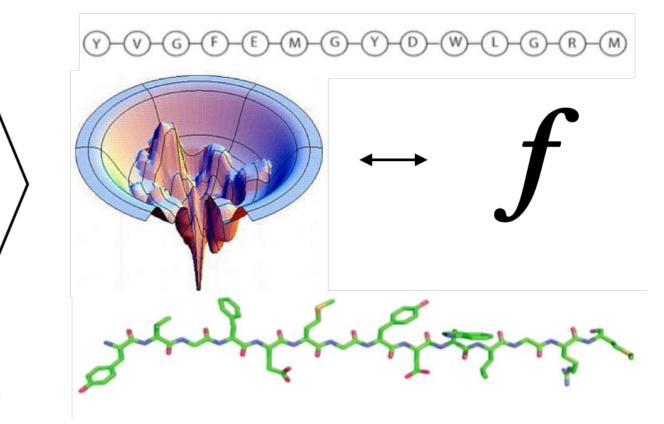
Beyond "Darwinian" biomolecular modeling

Problem settings

- Input: just single sequences
- **Output:** folded and functional 3D structures

Possible solutions

- Representation learning of sequence spaces informed by embeddings from bio LLMs
- Combine biophysics (force fields) with machine learning for first-principles folding



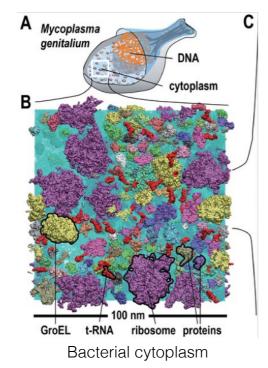
From molecular to cellular scale

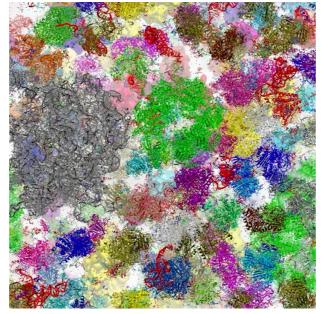
Connecting

- Molecular scale, where fundamental biochemistry takes place
- **Cellular** scales, where biological function (or dysfunction) is realized

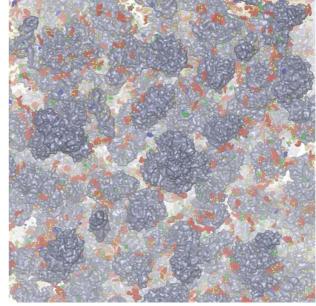
Multiscale modeling

- Computational modeling of large macromolecular complexes and assemblies
- Machine learning for modeling intra- and inter-molecular interactions





Nanosecond dynamics



Diffusive motion of metabolites

Thank you!

Public databases

Students & Collaborators

Rahmatullah Roche

Bernard Moussad

Md Hossain Shuvo

Sumit Tarafder

Trevor Norton

Xinyu Wang

Wei Sun

PDB

BioLiP

Organizers

Workshop for AI-Powered Materials Discovery in the Great Plains

University of South Dakota

Funding sources

NSF CAREER DBI-1942692 NSF CISE IIS-2030722

VIRGINIA TECH.

NAIRR Pilot

SVIKRTLRAAGYGELLEAANGQEALELMKNSWVDIVMTDYNMPVMDGLEFIKTIKSLSKDIPVVVISTEGNASKIKEFMDCGAAGYITKPFTA SILRTMVSGFGVRS KKETKIAIITGYDYFEYAOKALKIGVEDYILKPVSK RGIKTFID KYGISNVYEAEDGNSASKVFSEILPDLVI **FIAEEFKNI** DLLRVGLEENGYN-CLVAYDGAMGLRMFRANTFDL ELCKEIRAA PILMLTALGSTDDKLDGFDAGADDYMVKPFDF DLLRAGLEENGYN-CLVAYDGAMGLRMFRANTFDI TALGSTDDKLDGFDAGADDYMVKPFDF DLLRAGLEENGYN-CLVAYDGAMGLRMFRAN TALGSTDDKLDGFDAGADDYMVKPFDF DLLKTGLEENGYH-TMVAYDGAMGLRLFOS TALGSTDDKLDGFDAGADDYMVKPFDF IALRSILEEHGFSICGTASNGLEAMSLIEKHO ILVLSNYEDFDSVRSALLLGAADYLLKKISF YEDFDSVRSALLLGAADYLLKKIOF IALRSILEEHGFFICGTASNGLEAVP: YAQKALKIGVEDYILKPVSK RGIKTFIDKYKISDVYEAEDGNSAFKTFSEVLPDL TUNI YAQKALKIGVEDYILKPVSK RGIKTFIDKYKISDVYEAEDGNSAFKTFSEVLPDLV ENCILIDLRIADHDGAELWSHVRCLEKEYOVAI EELGEFFSSLGWN-VRVCLTAPAARAAL SETEAADFKADFLFVKPVDF IDVVIPGIDGUE XI OLKRLDS KTISRALEAEGYE-IFLAOSGEOAVE AOREHPDI AVEALKLGAYDYLTKPFHV KGIESKIKRLDLAKVILAFSGKEALEGVITYKPDI KLGAIDYLLKPVGI DOIKEIN [PDMDG] OGIVFGAFDYLVKPVTE TELKRFKDKSGFDIVSIAONGREA ENSYL LLREIOKE ALGFISKDNSI HAISTTIKNFDFDKSFSTPNPEKCLOYLKS EILKKMILVCNFIKIYEADSESTALDIVKNNDINMFLIDINLKGSSGLNLAMNIRSKYEFSOLIFLTTHMD-YMLQAFKOTHCYDYILKPYNK KSIIKQIDSAGFQVVGDAENGEDALEKIEVLEPDVVLTDIRMPYMDGLTLAEKIRORYPSTKVVIFSGYDDFEYAQKAIKLNVTEYILKPVNV

Open-source code available at:

https://github.com/Bhattacharya-Lab/