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Large language models (LLMs) for Bio

Lin, Z. et. al., 2023
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CRISPR/Cas9-Based TherapeuticsViral pathogenesis

Applications of LLMs for Bio
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Protein-nucleic acid interactions

• Underpins a wide range of cellular processes: from gene 
replication to regulation to signal transduction to metabolism

• Reliable and accurate characterization of protein-nucleic acid 3D 
interactions in a large-scale screening manner is highly desirable

Protein-DNA interaction Protein-RNA interaction
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Protein-RNA interaction

Protein-nucleic acid interactions
in atomic detail

Protein-DNA interaction

• Experimental structure determination is not always feasible or 
practical

• Can we use computational modeling to address this gap?
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Harness AI to predict structure from sequence
using AlphaFold

Can AlphaFold address this gap?
www.nobelprize.org
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Protein-RNA complex structure prediction
is not highly accurate even with AlphaFold3

Abramson, J. et. al., 2024

Computational methods for predicting the structures 
are not highly accurate
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Protein-RNA interaction

Protein-nucleic acid interactions: 
from structures to binding sites

Protein-DNA interaction

atomic level
structure

binding sites
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Protein-nucleic acid binding sites

Protein-DNA interaction Protein-RNA interaction

0.5Å• Binding sites = atom pairs within sum of van der Waal's radius+

• Unfortunately, experimental characterization is time-consuming and 
expensive
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This talk…

I. Protein-nucleic acid binding site prediction
powered by LLMs & deep graph learning

II. Single-sequence protein-nucleic acid 3D structure prediction 
using geometric attention-enabled pairing of bio LLMs

III. Future directions
AI-powered biomolecular modeling
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This talk…

I. Protein-nucleic acid binding site prediction
powered by LLMs & deep graph learning
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Protein-nucleic acid binding site prediction: 
a protein-centric view 

Partner-independent protein-nucleic acid binding site prediction

Predicted protein–
nucleic-acid binding site

Predicted protein–
nucleic-acid non binding site
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Protein-nucleic acid binding site prediction: 
existing approaches

Sequence-based Structure-aware

Utilizes protein sequence + 
evolutionary information

(e.g., SVMnuc, NCBRPred,…)

Utilizes protein sequence + 
evolutionary + structural 

information

(e.g., GraphBind, GraphSite)

+ Sequence readily available

- Tends to be less accurate
+ Generally more accurate
- Needs structural data, but

What if we integrated
protein language model (pLM) embeddings? Su, H. et. al., 2019

Zhang, J. et. al., 2021
Yuan, Q. et. al., 2022
Xia, Y. et. al., 2021

AlphaFold can be used
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EquiPNAS: 
pLM-informed equivariant deep graph learning

Roche, R. et. al., 2024

Graph node classification for residue-level binding site prediction

12 EGCL layers with hidden dimensions of 768,and dropout 
rate of 0.1 determined through 5-fold cross-validation
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EquiPNAS features: 
sequence- and pLM-based features

Features [shape] Description 

aa [L, 20] One-hot encodings of 20 amino acid residue types. 

PSSM [L, 20] Normalized position specific scoring matrix (PSSM). 

MSA [L, 256] Multiple sequence alignment (MSA) representation distilled 
through ColabFold’s EvoFormer blocks. 

pLM [L, 5120] pLM embeddings from ESM-2 with 15B parameters. 

 

Lin, Z. et. al., 2023
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EquiPNAS features: 
structures-based features 

Features [shape] Description 

SS [L, 11] One-hot encodings of 3- and 8-state secondary structure. 

RSA [L, 10] One-hot encodings of 2- and 8-state relevant solvent 
accessibility. 

Local geometry [L, 11] Cosine angle between the C=O of consecutive residues, 
normalized values of virtual bond and torsion angles, and 
normalized peptide backbone torsion angles. 

Residue orientation [L, 9] Unit vectors pointing towards the directions of Cα(i+1) − Cαi, 
Cα(i−1) − Cαi and Cβi − Cαi. 

Relative residue positioning [L, 2] Two types of relative positional features for the ith residue: 
(1) inverse of i representing the relative sequence position, 
and (2) inverse of the Euclidean distance of Cα atom from 
the centroid representing the relative spatial positioning. 

Residue virtual surface area [L, 1] Virtual surface area of the conceptual convex hull 
constructed by the atoms in a residue. 

Contact count [L, 1] The number of spatial neighbors of each residue.  
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EquiPNAS features: 
coordinate and edge features 

• Edge feature:

Ratio of logarithmic sequence separation & Euclidian distance

• Coordinate feature: 

Cα (x, y, z) coordinates from input protein structure
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EquiPNAS datasets: 
standard sets from the BioLiP database 
• Protein-DNA

o Train: 573 targets; 14,479 binding & 145,404 non-binding sites
o Test:181 targets; 3,208 binding & 72,050 and non-binding sites

• Protein-RNA

o Train: 495 targets;14,609 binding & 122,290 non-binding sites
o Test: 117 targets; 2,031 binding & 35,314 non-binding sites

Yang , J. et. al., 2012
Yuan, Q. et. al., 2022
Xia, Y. et. al., 2021

NOTE: Pre-processed to filter out protein chains with >30% 
sequence similarity between the train and test sets using CD-HIT



19

 

 

 

 

Protein-DNA 

Datasets Methods ROC-AUC PR-AUC 

 

 

 

Test_181 

GraphBind 0.8916 ± 
0.006003703 

0.3102 ± 
0.017706245 

p-value 8.63327E-08 7.16361E-09 

GraphSite 0.8964 ± 
0.006292853 

0.3286 ± 
0.018124262 

p-value 2.25585E-07 7.9832E-07 

EquiPNAS 0.9159 ±  
0.00395671 

0.3717 ± 
0.018372987 

 

EquiPNAS results: 
protein-DNA binding site prediction
• Use AlphaFold2 predicted structural models as input 

• Randomly sample 70% of the targets for each of the test sets, 
repeating it 10 times, means and standard deviations are reported
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EquiPNAS results: 
protein-RNA binding site prediction

 Datasets Methods ROC-AUC PR-AUC 

 

 

Protein-RNA 

 

 
 

Test_117 

GraphBind 0.7942 ± 
0.006250333 

0.2019 ± 
0.009573691 

p-value 2.3402E-11 1.44E-10 

EquiPNAS 0.8856 ± 
0.006221825 

0.3118 ± 
0.013003 

 

• Use AlphaFold2 predicted structural models as input 

• Randomly sample 70% of the targets for each of the test sets, 
repeating it 10 times, means and standard deviations are reported



21

Case study

7kuf_A6nua_A

F1-score =  0.523, MCC = 0.508
ROC-AUC = 0.944, PR-AUC = 0.638

F1-score =  0.757, MCC = 0.738
ROC-AUC = 0.980, PR-AUC = 0.778

F1-score =  0.64, MCC = 0.637
ROC-AUC = 0.985, PR-AUC = 0.837

F1-score =  0.933, MCC = 0.928
ROC-AUC = 1.0, PR-AUC = 1.0
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Ablation study using 5-fold cross-validation:
contribution of pLM embeddings

Protein-DNA Protein-RNA
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 Datasets Methods ROC-AUC PR-AUC 

 

Protein-RNA 

 

Test_117 

GraphBind          0.793 0.204 

EquiPNAS w/o 
(MSA+PSSM) 

0.877 0.299 

EquiPNAS 0.886 0.320 

 

 

Ablation study:
EquiPNAS results w/o (MSA +PSSM)

pLM embeddings reduce the dependence on the availability of 
explicit evolutionary information without a drastic drop in accuracy 
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Protein-DNA Protein-RNA

Bypassing the search for explicit evolutionary information 
leads to orders of magnitude speedup 

Ablation study:
running time
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Ablation study:
contribution of equivariance
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Experimental validation:
using GECX-RNA

Sun, W. et. al., 2023

Slide credit: Sun, W. et. al
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This talk…

II. Single-sequence protein-nucleic acid 3D structure prediction 
using geometric attention-enabled pairing of bio LLMs
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Protein-RNA complex
3D structure

Protein-nucleic acid 3D structure prediction: 
from sequence to all-atom coordinates

Protein
sequence

RNA
sequence
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ProRNA3D-single : 
protein-nucleic acid 3D structure prediction

Roche, R. et. al., 2025

Geometric attention-enabled pairing of biological LLMs
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ProRNA3D-single datasets: 
X-ray crystal structures from the PDB
• Filtering

o resolution < 3.5 Å
o deposited to the PDB on and before October 2022

• Datasets

o Train: 750 targets
o Validation: 48 targets

NOTE: Test set consists of targets released on and after 
November 2022 till November 2023



32

ProRNA3D-single results: 
protein-RNA complex structure prediction

ProRNA3D-single outperforms SOTA methods including AlphaFold3, 
particularly when evolutionary information is limited 
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Case study
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Ablation study:
effect of modeling accuracy of the individual components 

Performance gain is not because of individual protein or RNA component 
modeling, but due to improved inter-protein-RNA interaction prediction 
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Ablation study:
contribution of the neural architecture

Both symmetry-aware graph convolutions and geometric attention module 
are the key modules of the neural architecture of ProRNA3D-single
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This talk…

III. Future directions
AI-powered biomolecular modeling



• Input: just single sequences

• Output: folded and functional 3D structures
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Beyond “Darwinian” biomolecular modeling

Problem settings

• Representation learning of sequence spaces informed by embeddings from bio LLMs

• Combine biophysics (force fields) with machine learning for first-principles folding

Possible solutions



• Molecular scale, where fundamental biochemistry takes place

• Cellular scales, where biological function (or dysfunction) is realized
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From molecular to cellular scale
Connecting

• Computational modeling of large macromolecular complexes and assemblies

• Machine learning for modeling intra- and inter-molecular interactions

Multiscale modeling

Bacterial cytoplasm Nanosecond dynamics Diffusive motion of metabolites

Yu, I. et. al., 2016
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Thank you!
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Open-source code available at:

https://github.com/Bhattacharya-Lab/

https://github.com/Bhattacharya-Lab/EquiPNAS

