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Current region of 
detector grade region 
(20%-30%)
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Goal to get detector 
grade (60 % of total 
crystal mass)

➢ Large size detectors reduces 
background rate per kilogram 
significantly due to less cable and 
electronic requirement 

➢ Extremely difficult to get large 
portion of crystal to be detector 
grade due to difference in 
segregation of various 
impurities

Motivations: Increase 
the detector grade 
portion in Ge Crystals

➢ Detailed study of impurity segregation required. 

➢ Plan to use machine learning tools 
to analyze different variables and 
build a predictive model for 
growing large portion of a crystal 
to be a detector grade



Crystal growth process

The materials used for input are either freshly 
zone-refined ingots or portions of crystals 
previously identified as non-detector-grade. 

Growth is initiated by immersing a (100) Ge 
seed crystal in the melt and withdrawing it 
gradually, ensuring the melt temperature 
remains just above the melting threshold.  

To control CZ crystal growth, parameters 
such as pull speed, seed rotation, and melt 
temperature (set by applied power) are 
systematically varied.
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Direct Detection: Importance of HPGe in Dark Matter Detection

 
In direct detection, we do not observe the dark matter particle itself, but the nuclear recoil energy it imparts when it scatters off a 
target nucleus.  
 

                                                                  

 When it comes to the germanium detectors the recoil energy and the resolution is precise compared to any other detection method: 
 

                                                                       

 
High energy resolution will be <0.2% at MeV scale. They also have Dual signal readout: phonon + ionization → accurate recoil discrimination

The recoil energy ER imparted to the nucleus is given by:

ER =
2μ2v2

mN
(1 − cos θ )

where μ =
mχmN

mχ + mN
 is the reduced mass

Recoil energy for mχ = 100 GeV/c2 on Ge:

Emax
R ≈ 25.8 keV

Modern HPGe detectors can detect down to:
Threshold Eth ∼ 50 − 100 eV



Challenges in Current HPGe detectors 

The main challenges in the HPGe crystals are the scalability.  
 
Current detectors are only in range of 1-10kg, whereas when it come to xenon we can scale it to ton scale. 
 
when the HPGe detectors scale is low their possibility of detection also reduces significantly.  
 

                

Ge crystal purification and crystal growth is a rigorous task, getting ~1010/𝑐𝑚3 impurity range in every crystal 
growth is extremely hard.  
 
At USD we have 10 years of data from past crystal growth that can be used for Machine learning to increase 
detector grade portion

Dark matter interacts extremely weakly (σχN ∼ 10−46 cm2 or smaller)

Expected event rate:  ≲ 1 event per ton-year
Smaller detectors (e.g., 1-10 kg) see  < 1 event in years

Ton-scale mass is required to build up enough exposure (M × T )
Only then can we explore the full parameter space down to the neutrino floor



Input parameters
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• The average net impurity of 
previous crystal or zone 
refined ingots acquired using 
Hall effect measurement , 
mass of input materials, 
applied power in the process, 
growth rate of the crystal (time 
dependent). 

• Rotation rate, Pull rate of 
crystal are kept same for 
uniformity for all growths



Data Preparation

• Already have a large data set from the crystals 
grown over 10 years of time. 

• Data taken include quality of input material, pull 
rate, rotation rate, applied power, growth rate, real 
time mass of the crystal and real time photo of the 
growth process. 

• Used data sets from 20 crystal growths for first 
study, then expanded to 50 crystal growth data. 
 
Input Parameters: Time, Growth Rate, Power, 
Impurity of previous crystal etc. 

Output 

• The percentage of detector grade region.
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Time 
(sec) Power(W

)

Gr owth Rate 
(gm/sec)

No. of net impu rity 
atoms ad ded

Number of net impurity of 
pre viou s crystal

Ou tpu t net 
impurity(/cm^3 )

Detector grade 
reg ion(%)

0 872 0 0 3.5338 3E+1 3 3.4296 9E+1 4 4.7434 1E+1 1 38
900 870 0 0.0911 11111 3.5338 3E+1 3 3.4296 9E+1 4 4.7437 7E+1 1 38

135 0 870 0 0.0540 74074 3.5338 3E+1 3 3.4296 9E+1 4 4.7308 9E+1 1 38
288 0 868 0 0.0152 77778 3.5338 3E+1 3 3.4296 9E+1 4 4.7231 4E+1 1 38
360 0 866 0 0.0119 44444 3.5338 3E+1 3 3.4296 9E+1 4 4.7155 7E+1 1 38
432 0 864 0 0.0182 87037 3.5338 3E+1 3 3.4296 9E+1 4 4.7017 1E+1 1 38
504 0 862 0 0.0279 7619 3.5338 3E+1 3 3.4296 9E+1 4 4.6770 7E+1 1 38
576 0 860 0 0.0319 44444 3.5338 3E+1 3 3.4296 9E+1 4 4.6450 8E+1 1 38
648 0 858 0 0.0472 22222 3.5338 3E+1 3 3.4296 9E+1 4 4.5923 5E+1 1 38
720 0 856 0 0.0765 27778 3.5338 3E+1 3 3.4296 9E+1 4 4.4988 E+11 38
892 8 856 0 0.3291 89068 3.5338 3E+1 3 3.4296 9E+1 4 4.0291 8E+1 1 38

100 80 856 0 0.4166 66667 3.5338 3E+1 3 3.4296 9E+1 4 3.4370 6E+1 1 38
108 00 856 0 0.4074 07407 3.5338 3E+1 3 3.4296 9E+1 4 2.9046 4E+1 1 38
129 60 866 0 2.3456 79012 3.5338 3E+1 3 3.4296 9E+1 4 8.61E+10 38
134 64 870 0 0.9358 28877 3.5338 3E+1 3 3.4296 9E+1 4 5.04E+10 38
151 20 870 0 3.1216 93122 3.5338 3E+1 3 3.4296 9E+1 4 -5.03E+10 38
159 84 870 0 1.5515 51552 3.5338 3E+1 3 3.4296 9E+1 4 -5.87E+10 38
165 60 870 0 0.8997 58454 3.5338 3E+1 3 3.4296 9E+1 4 -6.48E+10 38
180 00 870 0 2 3.5338 3E+1 3 3.4296 9E+1 4 -1.4565 E+11 38
187 20 870 0 0.8226 49573 3.5338 3E+1 3 3.4296 9E+1 4 -2.4313 E+11 38
194 40 870 0 0.6018 51852 3.5338 3E+1 3 3.4296 9E+1 4 -3.6795 3E+1 1 38
201 60 870 0 0.6944 44444 3.5338 3E+1 3 3.4296 9E+1 4 -6.2403 E+11 38
216 00 870 0 0.9259 25926 3.5338 3E+1 3 3.4296 9E+1 4 -6.6365 9E+1 1 38
230 40 870 0 0.7378 47222 3.5338 3E+1 3 3.4296 9E+1 4 -7.2430 8E+1 1 38
240 48 870 0 0.4615 76846 3.5338 3E+1 3 3.4296 9E+1 4 -7.7103 1E+1 1 38

265 82.4 940 4 1.2414 22896 3.5338 3E+1 3 3.4296 9E+1 4 -9.6047 1E+1 1 38
292 32 950 0 2.0354 40613 3.5338 3E+1 3 3.4296 9E+1 4 -1.8510 7E+1 2 38

Example data set

• Using pull rate, position of 
the crystal and real time 
mass of the grown crystal, 
time and growth rate can 
be determined. 

• From the hall effect 
measurement of the input 
materials and their 
masses, number of net 
impurity atoms is 
estimated

Example data set for one crystal growth



Long Short-Term Memory(LSTM) in Crystal 
Growth Optimization

○ LSTM (Long Short-Term Memory) is a type of recurrent neural 	
network (RNN) designed to handle sequential and time-series 	
data by learning long-range dependencies.

○ LSTMs use gated memory cells to retain or forget information 
selectively, making them well-suited for dynamic process 
prediction.

○ Crystal growth is a time-dependent process, LSTMs capture 
temporal relationships in experimental data, making them ideal 
for predicting detector-grade yield based on past growth 
conditions.

○ Unlike traditional regression models, LSTMs learn complex, 	
nonlinear correlations between parameters without requiring 	
predefined equations.

Input Features 
(Growth rate, Impurity, Pull 
rate, detector grade portion 

etc)

LSTM Training 

Target Output: Detector Grade

Actual Predicted
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○ At USD, Ge crystals are grown frequently and numerous HPGe crystal growth data have been collected. 
○ Past 50 HPGe crystal growth data have been used to train the LSTM model. 
○ Model has generated successful prediction attaining an average of 90% accuracy in most trials. 
○ The LSTM model can also be used to predict the detector grade portion of newer crystal based on input physical parameters, like 

impurity, growth rate etc. 
○ Higher the number of data, higher the accuracy of the LSTM model.

Data Driven LSTM: Actual vs Predicted Detector Grade
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Accuracy of the Model

• Most data points correspond to detector-grade 
portions below 20%, with very few samples above 
20%.

• The model predicts well for the majority (below 
20%).

• Limited data for higher values, affecting accuracy in 
that range above 20%



LSTM Feature Importance Analysis (SHAP analysis)

Important Features: 

1. Number of net impurity of 
previous crystal added: 

2. No. of net impurity atoms added: 

Results: 

→ Higher impurity → Lower detector- 
grade 

→ Lower impurity → Higher detector- 
grade → SHAP analysis indicates that Time, Power, and 

Growth Rate(different from experience) have 
minimal impact on the detector-grade portion.
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Ongoing Research 

• From ML model we understood impurities impact 
the detector grade portion 

• Investigating impurity segregation during crystal 
growth is key to understanding impurity transport 
behavior under varying thermal profiles

• Molecular dynamics enables detailed analysis of the 
solid–liquid interface in crystal growth by modeling 
both pure Ge-Ge interaction and Ge–impurity 
systems 

• With no available SW potentials for Ge–impurity 
systems, ML-generated potentials can be employed 
to model the melt region in simulations. 
 
 
 

Solid-Liquid interface of Ge



Impurity segregation at Solid-Liquid Interface during Crystal Growth
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Future Work:

❏ Expanding the Dataset for Improved Model Accuracy, Include more diverse process conditions to 
make the model robust against variations. Integrate historical growth data from past experiments to 
enhance predictive capabilities, optimized search for higher detector grade feeding optimized input 
parameter. 

❏ Enhancing Detector-Grade Yield through Zone Refining Integration, Expand the dataset structure by 
incorporating zone refining process data alongside crystal growth parameters. Model impurity movement 
across refining stages to optimize the number of passes required for higher purity. 

❏ Real-Time Optimization for HPGe Growth, Implement a real-time machine learning feedback loop to 
adjust parameters dynamically during growth. Develop an automated process control system integrating 
LSTM predictions with experimental setups.
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Questions or 
Suggestions?


